1.Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven,Connecticut 06520-8120, USA
2.Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
3.Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA
Corresponding author, jvary@iastate.edu
Scan for full text
Chrysovalantis Constantinou, Mark A. Caprio, James P. Vary, et al. Natural orbital description of the halo nucleus 6He. [J]. Nuclear Science and Techniques 28(12):179(2017)
Chrysovalantis Constantinou, Mark A. Caprio, James P. Vary, et al. Natural orbital description of the halo nucleus 6He. [J]. Nuclear Science and Techniques 28(12):179(2017) DOI: 10.1007/s41365-017-0332-6.
Ab initio, calculations of nuclei face the challenge of simultaneously describing strong short-range internucleon correlations and the long-range properties of weakly-bound halo nucleons. Natural orbitals, which diagonalize the one-body density matrix, provide a basis which is better matched to the physical structure of the many-body wave function. We demonstrate that the use of natural orbitals significantly improves convergence for ,ab initio, no-core configuration interaction calculations of the neutron halo nucleus ,6,He, relative to the traditional oscillator basis.
Neutron halo nucleus 6HeNuclear structureNuclear theory
S. C. Pieper, R. B. Wiringa, J. Carlson, Quantum Monte Carlo calculations of excited states in A=6-8 nuclei. Phys. Rev. C 70, 054325 (2004). doi: 10.1103/PhysRevC.70.054325http://doi.org/10.1103/PhysRevC.70.054325
T. Neff, H. Feldmeier, Cluster structures within Fermionic Molecular Dynamics. Nucl. Phys. A 738, 357-361 (2004). doi: 10.1016/j.nuclphysa.2004.04.061http://doi.org/10.1016/j.nuclphysa.2004.04.061
G. Hagen, D. J. Dean, M. Hjorth-Jensen, et al., Benchmark calculations for 3H, 4He, 16O, and 40Ca with ab initio coupled-cluster theory. Phys. Rev. C 76, 044305 (2007). doi: 10.1103/PhysRevC.76.044305http://doi.org/10.1103/PhysRevC.76.044305
S. Quaglioni, P. Navrátil, Ab initio many-body calculations of nucleon-nucleus scattering. Phys. Rev. C 79, 044606 (2009). doi: 10.1103/PhysRevC.79.044606http://doi.org/10.1103/PhysRevC.79.044606
S. Bacca, N. Barnea, A. Schwenk, Matter and charge radius of 6He in the hyperspherical-harmonics approach. Phys. Rev. C 86, 034321 (2012). doi: 10.1103/PhysRevC.86.034321http://doi.org/10.1103/PhysRevC.86.034321
N. Shimizu, T. Abe, Y. Tsunoda, et al., New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012). doi: 10.1093/ptep/pts012http://doi.org/10.1093/ptep/pts012
T. Dytrych, K. D. Launey, J. P. Draayer, et al., Collective modes in light nuclei from first principles. Phys. Rev. Lett. 111, 252501 (2013). doi: 10.1103/PhysRevLett.111.252501http://doi.org/10.1103/PhysRevLett.111.252501
B. R. Barrett, P. Navrátil, J. P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131-181 (2013). doi: 10.1016/j.ppnp.2012.10.003http://doi.org/10.1016/j.ppnp.2012.10.003
S. Baroni, P. Navrátil, S. Quaglioni, Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He. Phys. Rev. C 87, 034326 (2013). doi: 10.1103/PhysRevC.87.034326http://doi.org/10.1103/PhysRevC.87.034326
R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995). doi: 10.1103/PhysRevC.51.38http://doi.org/10.1103/PhysRevC.51.38
D. R. Entem, R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003). doi: 10.1103/PhysRevC.68.041001http://doi.org/10.1103/PhysRevC.68.041001
A. M. Shirokov, J. P. Vary, A. I. Mazur, et al., Realistic nuclear Hamiltonian: Ab exitu approach. Phys. Lett. B 644, 33-37 (2007). doi: 10.1016/j.physletb.2006.10.066http://doi.org/10.1016/j.physletb.2006.10.066
E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009). doi: 10.1103/RevModPhys.81.1773http://doi.org/10.1103/RevModPhys.81.1773
M. Freer, The clustered nucleus—cluster structures in stable and unstable nuclei. Rep. Prog. Phys. 70, 2149-2210 (2007). doi: 10.1088/0034-4885/70/12/R03http://doi.org/10.1088/0034-4885/70/12/R03
B. Jonson, Light dripline nuclei. Phys. Rep. 389, 1-59 (2004). doi: 10.1016/j.physrep.2003.07.004http://doi.org/10.1016/j.physrep.2003.07.004
I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215-313 (2013). doi: 10.1016/j.ppnp.2012.07.001http://doi.org/10.1016/j.ppnp.2012.07.001
P.-O. Löwdin, Quantum theory of many-particle systems. I. physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474 (1955). doi: 10.1103/PhysRev.97.1474http://doi.org/10.1103/PhysRev.97.1474
H. Shull, P.-O. Löwdin, Natural spin orbitals for helium. J. Chem. Phys. 23, 1565 (1955). doi: 10.1063/1.1742383http://doi.org/10.1063/1.1742383
P.-O. Löwdin, H. Shull, Natural orbitals in the quantum theory of two-electron systems. Phys. Rev. 101, 1730 (1956). doi: 10.1103/PhysRev.101.1730http://doi.org/10.1103/PhysRev.101.1730
E. R. Davidson, Properties and uses of natural orbitals. Rev. Mod. Phys. 44, 451 (1972). doi: 10.1103/RevModPhys.44.451http://doi.org/10.1103/RevModPhys.44.451
C. Mahaux, R. Sartor, Single-particle motion in nuclei. Adv. Nucl. Phys. 20, 1-223 (1991). doi: 10.1007/978-1-4613-9910-0_1http://doi.org/10.1007/978-1-4613-9910-0_1
M. V. Stoitsov, A. N. Antonov, S. S. Dimitrova, Natural orbital representation and short-range correlations in nuclei. Phys. Rev. C 48, 74 (1993). doi: 10.1103/PhysRevC.48.74http://doi.org/10.1103/PhysRevC.48.74
T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electron- Structure Theory (Wiley, Chichester, 2000).
A. E. McCoy, M. A. Caprio, Algebraic evaluation of matrix elements in the Laguerre function basis. J. Math. Phys. 57, 021708 (2016). doi: 10.1063/1.4941327http://doi.org/10.1063/1.4941327
M. Moshinsky, Y. F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood Academic Publishers, Amsterdam,1996).
J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin, 2007).
R. J. Furnstahl, G. Hagen, T. Papenbrock, Corrections to nuclear energies and radii in finite oscillator spaces. Phys. Rev. C 86, 031301(R) (2012). doi: 10.1103/PhysRevC.86.031301http://doi.org/10.1103/PhysRevC.86.031301
S. N. More, A. Ekström, R. J. Furnstahl, et al., Universal properties of infrared oscillator basis extrapolations. Phys. Rev. C 87, 044326 (2013). doi: 10.1103/PhysRevC.87.044326http://doi.org/10.1103/PhysRevC.87.044326
P. Maris, J. P. Vary, A. M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009). doi: 10.1103/PhysRevC.79.014308http://doi.org/10.1103/PhysRevC.79.014308
P. Maris, J. P. Vary, Ab initio nuclear structure calculations of p-shell nuclei with JISP16. Int. J. Mod. Phys. E 22, 1330016 (2013). doi: 10.1142/S0218301313300166http://doi.org/10.1142/S0218301313300166
M. A. Caprio, P. Maris, J. P. Vary, et al., Collective rotation from ab initio theory. Int. J. Mod. Phys. E 24, 1541002 (2015). doi: 10.1142/S0218301315410025http://doi.org/10.1142/S0218301315410025
L. Schäfer, H.A. Weidenmüller, Self-consistency in the application of Brueckner’s method to doubly-closed-shell nuclei. Nucl. Phys. A 174,1-25 (1971). doi: 10.1016/0375-9474(71)90999-7http://doi.org/10.1016/0375-9474(71)90999-7
M. A. Caprio, P. Maris, J. P. Vary, Coulomb-Sturmian basis for the nuclear many-body problem. Phys. Rev. C 86, 034312 (2012). doi: 10.1103/PhysRevC.86.034312http://doi.org/10.1103/PhysRevC.86.034312
G. Hagen, M. Hjorth-Jensen, N. Michel, Gamow shell model and realistic nucleon-nucleon interactions. Phys. Rev. C 73, 064307 (2006). doi: 10.1103/PhysRevC.73.064307http://doi.org/10.1103/PhysRevC.73.064307
M. A. Caprio, P. Maris, J. P. Vary, Halo nuclei 6He and 8He with the Coulomb-Sturmian basis. Phys. Rev. C 90, 034305 (2014). doi: 10.1103/PhysRevC.90.034305http://doi.org/10.1103/PhysRevC.90.034305
D.R. Tilley, C. M. Cheves, J. L. Godwin, et al., Energy levels of light nuclei A=5, 6, 7. Nucl. Phys. A 708, 3-163 (2002). doi: 10.1016/S0375-9474(02)00597-3http://doi.org/10.1016/S0375-9474(02)00597-3
J. L. Friar, J. Martorell, D. W. L. Sprung, Nuclear sizes and the isotope shift. Phys. Rev. A 56, 4579 (1997). doi: 10.1103/PhysRevA.56.4579http://doi.org/10.1103/PhysRevA.56.4579
L.-B. Wang, P. Mueller, K. Bailey, et al., Laser spectroscopic determination of the 6He nuclear charge radius. Phys. Rev. Lett. 93, 142501 (2004). doi: 10.1103/PhysRevLett.93.142501http://doi.org/10.1103/PhysRevLett.93.142501
M. Brodeur, T. Brunner, C. Champagne, et al., First direct mass measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He. Phys. Rev. Lett. 108, 052504 (2012). doi: 10.1103/PhysRevLett.108.052504http://doi.org/10.1103/PhysRevLett.108.052504
Z.-T. Lu, P. Mueller, G. W. F. Drake, et al., Colloquium: Laser probing of neutron-rich nuclei in light atoms. Rev. Mod. Phys. 85, 1383 (2013). doi: 10.1103/RevModPhys.85.1383http://doi.org/10.1103/RevModPhys.85.1383
P. Maris, M. Sosonkina, J.P. Vary, Scaling of ab-initio nuclear physics calculations on multicore computer architectures. Procedia Comput. Sci. 1, 97-106 (2010). doi: 10.1016/j.procs.2010.04.012http://doi.org/10.1016/j.procs.2010.04.012
H. M. Aktulga, C. Yang, E. G. Ng, et al., Improving the scalability of a symmetric iterative eigensolver for multi-core platforms. Concurrency Computat. Pract. Exper. 26, 2631-2651 (2013). doi: 10.1002/cpe.3129http://doi.org/10.1002/cpe.3129
S.K. Bogner, R.J. Furnstahl, P. Maris, et al., Convergence in the no-core shell model with low-momentum two-nucleon interactions. Nucl. Phys. A 801, 21-42 (2008). doi: 10.1016/j.nuclphysa.2007.12.008http://doi.org/10.1016/j.nuclphysa.2007.12.008
S. A. Coon, M. I. Avetian, M. K. G. Kruse, et al., Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis. Phys. Rev. C 86, 054002 (2012). doi: 10.1103/PhysRevC.86.054002http://doi.org/10.1103/PhysRevC.86.054002
R.J. Furnstahl, S. N. More, T. Papenbrock, Systematic expansion for infrared oscillator basis extrapolations. Phys. Rev. C 89, 044301 (2014). doi: 10.1103/PhysRevC.89.044301http://doi.org/10.1103/PhysRevC.89.044301
R.J. Furnstahl, G. Hagen, T. Papenbrock, et al., Infrared extrapolations for atomic nuclei. J. Phys. G 42, 034032 (2015). doi: 10.1088/0954-3899/42/3/034032http://doi.org/10.1088/0954-3899/42/3/034032
K. A. Wendt, C. Forssén, T. Papenbrock, et al., Infrared length scale and extrapolations for the no-core shell model. Phys. Rev. C 91, 061301(R) (2015). doi: 10.1103/PhysRevC.91.061301http://doi.org/10.1103/PhysRevC.91.061301
J. P. Vary, P. Maris, E. Ng, et al., Ab initio nuclear structure - the large sparse matrix eigenvalue problem. J. Phys. Conf. Ser. 180, 012083 (2009). doi: 10.1088/1742-6596/180/1/012083http://doi.org/10.1088/1742-6596/180/1/012083
C. F. Bender, E. R. Davidson, A natural orbital based energy calculation for helium hydride and lithium hydride. J. Phys. Chem. 70, 2675-2685 (1966). doi: 10.1021/j100880a036http://doi.org/10.1021/j100880a036
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution