1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
Corresponding authors: Ying Zou, zouying@sinap.ac.cn;
Yong Wang, wangyong@sinap.ac.cn
Zheng Jiang, jiangzheng@sinap.ac.cn
Scan for full text
Zhen-Hua Chen, Fan-Fei Sun, Ying Zou, et al. Design of wide range energy material beamline at the Shanghai Synchrotron Radiation Facility. [J]. Nuclear Science and Techniques 29(2):26(2018)
Zhen-Hua Chen, Fan-Fei Sun, Ying Zou, et al. Design of wide range energy material beamline at the Shanghai Synchrotron Radiation Facility. [J]. Nuclear Science and Techniques 29(2):26(2018) DOI: 10.1007/s41365-018-0356-6.
We report the design of a wide range energy material beamline (E-line) with multiple experimental techniques at the Shanghai Synchrotron Radiation Facility (SSRF). The undulators consisted of an elliptically polarizing undulator (EPU) and in-vacuum undulator (IVU), that generate the soft and hard X-rays, respectively. The beamline covered a wide energy range from 130 to 18 keV with both a high photon flux (,>,10,12, phs/sec with exit silt 30 μm in soft X-ray and ,>,5×10 ,12, phs/sec in hard X-ray within 0.1%BW bandwidth) and promising resolving power (maximum E/∆E,>,15000 in soft X-ray with exit silt 30 μm and ,>,6000 in hard X-ray). Moreover, the beam spots from the soft and hard X-rays were focused to the same sample position with a high overlap ratio, so that the surfaces, interfaces, and bulk properties were characterized in situ by changing the probing depth.
Synchrotron radiationBeamlineWide energy rangeE-lineShanghai Synchrotron Radiation Facility
R. Noyori, Synthesizing our future, Nature. Chem. 1: 5-6 (2009). doi: 10.1038/nchem.143http://doi.org/10.1038/nchem.143
M. Lang, F. Zhang, J. Zhang et al., Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions, Nature. Mater. 8: 793-797 (2009). doi: 10.1038/nmat2528http://doi.org/10.1038/nmat2528
P. Liu, Y. Zhao, R. Qin et al., Photochemical route for synthesizing atomically dispersed palladium catalysts”, Science 352(6287):797-801 (2016). doi: 10.1126/science.aaf5251http://doi.org/10.1126/science.aaf5251
B. Zhang, X. Zheng, O. Voznyy et al., Homogeneously dispersed, multimetal oxygen-evolving catalysts, Science 352 (6283): 333-337 (2016). doi: 10.1126/science.aaf1525http://doi.org/10.1126/science.aaf1525
R. Mu, Q. Fu, H. Xu et al., Synergetic Effect of Surface and Subsurface Ni Species at Pt-Ni Bimetallic Catalysts for CO Oxidation, J. Am. Chem. Soc. 133(6): 1978-1986 (2011). doi: 10.1021/ja109483ahttp://doi.org/10.1021/ja109483a
J. Liu, Q. Zhao, J. L. Liu et al., Heterovalent-Doping-Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing II-VI Nanocrystals, Adv. Mater. 27: 2753-2761 (2015). doi: 10.1002/adma.201500247http://doi.org/10.1002/adma.201500247
R. Lindblad, D. Bi, B. Park et al., Electronic Structure of TiO2 /CH3 NH3 PbI3 Perovskite Solar Cell Interfaces, J. Phys. Chem. Lett. 5: 648-653 (2014). doi: 10.1021/jz402749fhttp://doi.org/10.1021/jz402749f
Z. H. Chen, W. Q. Peng, K. Zhang et al., Band alignment by ternary crystalline potential-tuning interlayer for efficient electron injection in quantum dot-sensitized solar cells. J. Mater. Chem. A. 2, 7004-7014 (2014). doi: 10.1039/C3TA15435Ahttp://doi.org/10.1039/C3TA15435A
R. T. Vang, E. Lægsgaarda, F. Besenbacher, Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy, Phys. Chem. Chem. Phys. 9: 3460-3469 (2007). doi: 10.1039/B703328Chttp://doi.org/10.1039/B703328C
W. X. Huang, Oxide Nanocrystal Model Catalysts, Acc. Chem. Res. 49(3): 520-527 (2016). doi: 10.1021/acs.accounts.5b00537http://doi.org/10.1021/acs.accounts.5b00537
Y. Ren, High-Energy Synchrotron X-Ray Diffraction and Its Application to In Situ Structural Phase-Transition Studies in Complex Sample Environments, JOM, 64(1): 140-149 (2012). doi: 10.1007/s11837-011-0218-8http://doi.org/10.1007/s11837-011-0218-8
L. Luo, S. Zhang, Applications of synchrotron-based X-ray techniques in environmental science, Sci. China. Chem. 53(12): 2529-2538 (2010). doi: 10.1007/s11426-010-4085-xhttp://doi.org/10.1007/s11426-010-4085-x
J. Rundgren, Electron inelastic mean free path, electron attenuation length, and low-energy electron-diffraction theory, Phys. Rev. B. 59(7): 5106-5114 (1999). doi: 10.1103/PhysRevB.59.5106http://doi.org/10.1103/PhysRevB.59.5106
M. Wimmer, M. Bär, D. Gerlach et al., Hard x-ray photoelectron spectroscopy study of the buried Si/ZnO thin-film solar cell interface: Direct evidence for the formation of Si-O at the expense of Zn-O bonds, Appl. Phys. Lett. 99 (152104): 1-3 (2011). doi: 10.1063/1.3644084http://doi.org/10.1063/1.3644084
G. Materlik, T. Rayment, D. I. Stuart, Diamond Light Source: status and perspectives, Philos. Trans. A. Math. Phys. Eng. Sci. 373(2036): 1-16 (2015). doi: 10.1098/rsta.2013.0161http://doi.org/10.1098/rsta.2013.0161
R. Reininger, J. C. Woicik, S. L. Hulbert et al., NIST NSLS-II spectroscopy beamline optical plan for soft and tender X-ray spectroscopy and microscopy (100 eV to 7.5 keV). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 649, 49-51 (2011). doi: 10.1016/j.nima.2010.11.172http://doi.org/10.1016/j.nima.2010.11.172
R. Follath, M. Hvecker, G. Reichardt et al., The energy materials in-situ laboratory berlin (EMIL) at BESSY II. Journal of Physics: Conference Series, 425, 212003 (2003). doi: 10.1088/1742-6596/425/21/2122003http://doi.org/10.1088/1742-6596/425/21/2122003
T. Tanaka, H. Kitamura, SPECTRA: a synchrotron radiation calculation code, J. Synchrotron Rad. 8, 1221-1228 (2001). doi: 10.1107/S090904950101425Xhttp://doi.org/10.1107/S090904950101425X
R. Reininger, The in-focus variable line spacing plane grating monochromator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 649, 139-143 (2011). doi: 10.1016/j.nima.2010.12.162http://doi.org/10.1016/j.nima.2010.12.162
S. I. Fedoseenko, D. V. Vyalikh, I. E. Iossifov et al., Commissioning results and performance of the high-resolution Russian-German Beamline at BESSY II, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 718-728 (2003). doi: 10.1016/S0168-9002(03)00624-7http://doi.org/10.1016/S0168-9002(03)00624-7
G. Marot, M. Rossat, A. Freund et al., Cryogenic cooling of monochromators, Rev. Sci. Instrum. 63: 477-480 (1992). doi: 10.1063/1.1142736http://doi.org/10.1063/1.1142736
D. H. Bilderback, A. K. Freund, G. S. Knapp, The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources, J. Synchrotron. Radiat. 7(2), 53-60 (2000). doi: 10.1107/S0909049500000650http://doi.org/10.1107/S0909049500000650
L. Zhang, W. K. Lee, M. Wulff, The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline, J. Synchrotron. Radiat. 10(4), 313-319 (2003). doi: 10.1107/S0909049503012135http://doi.org/10.1107/S0909049503012135
L. Zhang, W. K. Lee, M. Wulff et al., Performance prediction of cryogenically cooled silicon crystal monochromator, AIP Conference Proceedings 705, 623-626 (2004). doi: 10.1063/1.1757873http://doi.org/10.1063/1.1757873
B. Lai, F. Cerrina, SHADOW: A synchrotron radiation ray tracing program, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 246, 337-341 (1986). doi: 10.1016/0168-9002(86)90101-4http://doi.org/10.1016/0168-9002(86)90101-4
V. N. Strocov, T. Schmitt, U. Flechsig et al., High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies, J. Synchrotron. Radiat. 17, 631-643 (2010). doi: 10.1107/S0909049510019862http://doi.org/10.1107/S0909049510019862
J. B. West, H. A. Padmore, Optical Engineering, in Handbook on Synchrotron Radiation 2, edited by G. V. Marr. Amsterdam: Elsevier (1987).
M. S. Rio, R. J. Dejus, XOP: Recent Developments, Proc. SPIE 3448, Crystal and Multilayer Optics, 340 (1998). doi: 10.1117/12.332522http://doi.org/10.1117/12.332522
0
Views
1
Downloads
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution