1.Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics, Xi'an, Shaanxi,710119, China
2.University of Chinese Academy of Sciences, Beijing, 100049, China
3.Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
Corresponding author.E-mail address:xuxy@opt.ac.cn
Scan for full text
Yu-Man Fang, Xiang-Yan Xu, Jin-Shou Tian, et al. Design of a control system with high stability for astreak camera using isolated ADC. [J]. Nuclear Science and Techniques 29(2):22(2018)
Yu-Man Fang, Xiang-Yan Xu, Jin-Shou Tian, et al. Design of a control system with high stability for astreak camera using isolated ADC. [J]. Nuclear Science and Techniques 29(2):22(2018) DOI: 10.1007/s41365-018-0361-9.
The streak camera is an ultra-fast diagnostic instrument with high sensitivity, and a high temporal and spatial resolution. It is primarily employed in various scientific research, such as inertial confinement fusion (ICF), synchrotron light sources, and electron positron colliders. An automatic control system for an X-ray streak camera is presented in this paper. The output terminal of an analog-to-digital converter (ADC) was isolated from its input terminal, to reduce interference from high-voltage electrodes. Compared with traditional methods, this scheme also improved the internal electromagnetic interface (EMI) immunity. Therefore, the system stability was enhanced. With this optimized control system, some characterizations of the streak camera were measured. Static and dynamic spatial resolutions of 25 and 20 lp/mm (CTF = 20%), respectively, were obtained. In addition, a dynamic range of 552:1 and temporal resolution of 7.3 ps were achieved. The results confirmed that these characterizations are sufficient for the specifications derived from the diagnostic requirements of ICF.
ICFDistributed controlStreak cameraIsolated ADCX-ray detector
S.F. Khan, J.J. Lee, N. Lzumi et al., Characterization of the X-ray sensitivity of a streak camera used at the National Ignition Facility (NIF), in proceedings of Target diagnostics physics and engineering for Inertial Confinement Fusion II, San Diego, USA, August 27-28, 2013. doi: 10.1117/12.2024555http://doi.org/10.1117/12.2024555
S.F. Khan, P.M. Bell, D.K. Bradley et al., Measuring x-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF), in proceedings of Target diagnostics physics and engineering for Inertial Confinement Fusion, San Diego, USA, August 14, 2012. doi: 10.1117/12.930032http://doi.org/10.1117/12.930032
C.P. Welsch, H.H. Braun, E. Bravin et al., Longitudinal beam profile measurements at CTF3 using a streak camera.J. Instrum.1, P09002 (2006). doi: 10.1088/1748-0221/1/09/P09002http://doi.org/10.1088/1748-0221/1/09/P09002
A. Takahashi, M. Nishizawa, Y. Inagaki et al., New femtosecond streak camera with temporal resolution of 180 fs, in proceedings of generation, amplification, and measurement of ultrashort laser pulses, Los Angeles, USA, January 25-27, 1994. doi: 10.1117/12.175863http://doi.org/10.1117/12.175863
T. Yanagida, Y. Fujimoto, A. Yoshikawa et al., Development and Performance Test of Picosecond Pulse X-ray Excited Streak Camera System for Scintillator Characterization. Appl. Phys. Express. 3, 056202 (2010). doi: 10.1143/APEX.3.056202http://doi.org/10.1143/APEX.3.056202
N.V. Ageeva, S.V. Andreev, V.P. Degtyareva et al., Sub-100 fs streak tube: computer-aided design, manufacturing, and testing, in proceedings of 28th international congress on high-speed imaging and photonics, Canberra, Australia, November 9-14, 2008. doi: 10.1117/12.821666http://doi.org/10.1117/12.821666
W. Uhring, C.V. Zint, P. Summ et al., Very high long-term stability synchroscanstreakcamera. Rev. Sci. Instrum. 74, 2646-2653 (2003). doi: 10.1063/1.1569409http://doi.org/10.1063/1.1569409
G.A. Naylor, K. Scheidt, J. Larsson et al.,A sub-picosecond accumulating streak camera for X-rays.Meas. Sci. Technol. 12, 1858-1864 (2001). doi: 10.1088/0957-0233/12/11/314http://doi.org/10.1088/0957-0233/12/11/314
J. Feng, H.J. Shin, J.R. Nasiatka et al., An X-ray streak camera with high spatio-temporal resolution. Appl. Phys. Lett. 91, 134102 (2007). doi: 10.1063/1.2793191http://doi.org/10.1063/1.2793191
P. Gallant, P. Forget, F. Dorchies et al., Characterization of a subpicosecond x-raystreakcamerafor ultrashort laser-produced plasmas experiments. Rev. Sci. Instrum. 71, 3627-3633 (2000). doi: 10.1063/1.1310347http://doi.org/10.1063/1.1310347
J. Liu, Y.K. Ding, J.S. Tian et al., Modular remote-controllable anisotropic focusing streak camera. High Power Laser Part. Beams. 24, 2405-2410 (2012). doi: 10.3788/HPLPB20122410.2405http://doi.org/10.3788/HPLPB20122410.2405 (in Chinese)
V.N. Rai, M. Shukla, H.C. Pant et al., Development of picosecond time resolution optical and X-raystreakcameras. Sadhana-Acad. P. Eng. S. 20, 937-954 (1995). doi: 10.1007/BF02745874http://doi.org/10.1007/BF02745874
Z.C. Tan, M. Mueck, X.H. Du et al., A Fully Isolated Delta-Sigma ADC for Shunt Based Current Sensing, IEEE J. Solid-St. Circ. 51, 2232-2240 (2016). doi: 10.1109/JSSC.2016.2581800http://doi.org/10.1109/JSSC.2016.2581800
J.W. Yang, T.S. Li, T. Yi et al.,Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility. Plasma Sci. Technol. 18, 1044-1048 (2016). doi: 10.1088/1009-0630/18/10/13http://doi.org/10.1088/1009-0630/18/10/13
P. Bell, D. Lee, A. Wooton et al., Target area and diagnostic interface issues on the National Ignition Facility. in proceedings of 13th Topical Conference on High-Tenperature Plasma Diagnostics, Tucson, USA, June 18-22, 2000. doi: 10.1063/1.1310582http://doi.org/10.1063/1.1310582
X.H. Chen, X.X. Xie, C.S. Gao et al., Design and implementation of the BESIII detector-control system. Nucl. Instrum. Meth. A. 592, 428-433 (2008). doi: 10.1016/j.nima.2008.04.072http://doi.org/10.1016/j.nima.2008.04.072
G.H. Chen, J.F. Chen, T.M. Wan et al., Database application research in real-time data access of acceleratorcontrolsystem.Nucl. SCI. Tech. 23, 267-271 (2012). doi: 10.13538/j.1001-8042/nst.23.267-271http://doi.org/10.13538/j.1001-8042/nst.23.267-271
Q.B. Yuan, M. Gu, R.P. Wang et al., Thecontrolsystem for SSRF injection and extraction. Nucl. Sci. Tech. 18, 326-329 (2007). doi: 10.1016/S1001-8042(08)60002-0http://doi.org/10.1016/S1001-8042(08)60002-0
J. Yan, R. Liu, C. Li et al. LabVIEW-based auto-timing counts virtual instrument system with ORTEC 974 Counter/Timer. Nucl. Sci. Tech. 20, 307-311 (2009). doi: 10.13538/j.1001-8042/nst.20.307-311http://doi.org/10.13538/j.1001-8042/nst.20.307-311
P. Liu, Y. Wang, R.Z. Tai et al., Implementation of effectivecontrolsystem for variable-included angle plane-grating monochromator. Nucl. Sci. Tech. 22, 9-12 (2011). doi: 10.13538/j.1001-8042/nst.22.9-12http://doi.org/10.13538/j.1001-8042/nst.22.9-12
B.K. Chung, A Experiment on the Layout and Grounding of Power Distribution Wires in a Printed Circuit Board, IEEE T. Educ. 44, 315-321 (2001). doi: 10.1109/13.965778http://doi.org/10.1109/13.965778
R. Kliger, Integrated transformer-coupled isolation. IEEE Instru. Meas. Mag. 6, 16-19 (2003). doi: 10.1109/MIM.2003.1184271http://doi.org/10.1109/MIM.2003.1184271
J.C. Candy, A use of double integration in sigma delta modulation, IEEE T. Commun. 33, 249-258 (1985). doi: 10.1109/TCOM.1985.1096276http://doi.org/10.1109/TCOM.1985.1096276
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution