1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Tsinghua University, Beijing 100084, China
3.Northwest Institute of Nuclear Technology, Xi’an 710024, China
Corresponding author, ping-wang13@mails.tsinghua.edu.cn
Scan for full text
Ping Wang, Jia-Ru Shi, Zheng-Feng Xiong, et al. Novel method to measure unloaded quality factor of resonant cavities at room temperature. [J]. Nuclear Science and Techniques 29(4):50(2018)
Ping Wang, Jia-Ru Shi, Zheng-Feng Xiong, et al. Novel method to measure unloaded quality factor of resonant cavities at room temperature. [J]. Nuclear Science and Techniques 29(4):50(2018) DOI: 10.1007/s41365-018-0383-3.
We demonstrated a novel method to measure the unloaded quality factor (,Q, factor) of high-Q resonant cavities. This method was used to obtain data with low errors and calculate the unloaded Q factor. This procedure was more reliable than traditional methods. The data required for the method were near the resonant frequency, not at the half-power points of the reflection coefficient curve or Smith chart. We applied the new method to measure a resonant cavity with an unloaded ,Q, factor of ~100,000, obtaining good agreement between the measured and theoretical results.
Resonant cavityQ factorLRC circuitCoupling coefficient
C. P. Wang, W. C. Fang, D. C. Tong et al., Design and study of a C-band pulse compressor for the SXFEL linac, Nucl. Sci. Tech. 25, 020101 (2014). doi: 10.13538/j.1001-8042/nst.25.020101http://doi.org/10.13538/j.1001-8042/nst.25.020101
M. Franzi, J. W. Wang et al., Compact rf polarizer and its application to pulse compression systems, Phys. Rev. Accel. Beams 19, 062002 (2016). doi: 10.1103/PhysRevAccelBeams.19.062002http://doi.org/10.1103/PhysRevAccelBeams.19.062002
Y. Nishimura, K. Sakaue, M Nishiyama, et al. Design of a two-cell rf-deflector cavity for ultra-short electron bunch measurement. Nucl. Instrum. Meth. A 764: 291-298 (2014). doi: 10.1016/j.nima.2014.07.035http://doi.org/10.1016/j.nima.2014.07.035
X. P. Jiang, J. R. Shi, P. Wang et al., C-band deflecting cavity for bunch length measurement of 2.5 MeV electron beam, in Proc. 7th Int. Particle Accel. Conf. (IPAC), Busan, Korea, May 2016, pp. 386-388
L. Auditore, R. C. Barna et al., Pulsed 5 MeVstanding wave electron linac for radiation processing, Phys. Rev. Accel. Beams 7, 030101 (2004). doi: 10.1103/PhysRevSTAB.7.030101http://doi.org/10.1103/PhysRevSTAB.7.030101
L. Zhang, J. R. Shi P. Wang et al., An X-band linac with tunable beam energy, in Proc. 6th Int. Particle Accel. Conf. (IPAC), Richmond, US, May2015, pp. 1644-1646.
S. Shahid, J. A. R. Ball, C. G. Wells, et al., Reflection type Q-factor measurement using standard least squares methods, IET Microw., Antennas Propag., 11, 426-432 (2011). doi: 10.1049/iet-map.2010.0395http://doi.org/10.1049/iet-map.2010.0395
A. J. Canós, J. M. Catalá-Civera, F. L. Peñaranda-Foix, and E. de los Reyes-Davó, A novel technique for deembedding the unloaded resonance frequency from measurements of microwave cavities, IEEE Trans. Microw. Theory Techn., 54, 3407-3416 (2006). doi: 10.1109/TMTT.2006.877833http://doi.org/10.1109/TMTT.2006.877833
P. Wang, L. H. Chua, and D. Mirshekar-Syahkal, Accurate characterization of low-Q microwave resonator using critical-points method, IEEE Trans. Microw. Theory Techn., 53, 349-353 (2005). doi: 10.1109/TMTT.2004.839931http://doi.org/10.1109/TMTT.2004.839931
J. M. Drozd, W. T. Joines, Determining Q using S parameter data, IEEE Trans. Microw. Theory Techn., 44, 2123-2127 (1996). doi: 10.1109/22.543972http://doi.org/10.1109/22.543972
D. Kajfez, Linear fractional curve fitting for measurement of high Q factors, IEEE Trans. Microw. Theory Techn., 42, 1149-1153 (1994). doi: 10.1109/22.299749http://doi.org/10.1109/22.299749
D. Kajfez, Q-factor measurement with a scalar network analyser, Proc. Inst. Elect. Eng.—Microw., Antennas Propag., 142, 369-372 (1995). doi: 10.1049/ip-map:19952142http://doi.org/10.1049/ip-map:19952142
E.-Y. Sun and S.-H. Chao, Unloaded Q measurement—The critical points method, IEEE Trans. Microw. Theory Techn., 43, 1983-1986, (1995). doi: 10.1109/22.402290http://doi.org/10.1109/22.402290
Y. Z. Wang, Y. Xie, T. L. Zhang, et al., Quality factor measurement for MEMS resonator using time domain amplitude decaying method, Microsyst Technol 21:825-829 (2015). doi: 10.1007/s00542-014-2161-4http://doi.org/10.1007/s00542-014-2161-4
D. Alesini, in Proceedings of the CAS-CERN Accelerator School: RF for accelerators, Ebeltoft, Denmark, 8-17 June 2010, edited by R. Bailey, CERN-2011-007, pp. 95-116, 125-147.
J. R. Bray and L. Roy, Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels, Microwaves Antennas Propagat IEE Proc 151 (2004), 345-350. doi: 10.1002/mop.29716http://doi.org/10.1002/mop.29716
P. J. Petersan and S. M. Anlage, Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods, Appl. Phys., 84, 3392-3402 (1998). doi: 10.1063/1.368498http://doi.org/10.1063/1.368498.
K. D. McKinstry and C. E. Patton, Methods for determination of microwave cavity quality factors from equivalent electronic circuit models, Rev. Sci. Instrum., 60, 439-443, (1989). doi: 10.1063/1.1140397http://doi.org/10.1063/1.1140397
D.-H. Han, Y.-S. Kim, M. Kwon, Two port cavity Q measurement using scattering parameters, Rev. Sci. Instrum., 67, 2179-2181, (1996). doi: 10.1063/1.1147034http://doi.org/10.1063/1.1147034
W. Xu, S. Belomestnykh, I. Ben-Zvi, et al., Improvement of the Q-factor measurement in RF cavities, in Proc. 4th Int. Particle Accel. Conf. (IPAC), Shanghai, China, May 2013, pp. 2489-2491.
D. Kajfez, Random and systematic uncertainties of reflection-type Q-factor measurement with network analyzer, IEEE Trans. Microw. Theory Techn., 51, 512-519, (2003). doi: 10.1109/TMTT.2002.807831http://doi.org/10.1109/TMTT.2002.807831
0
Views
0
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution