1.Physics Department, Academy of Army Armored Forces of PLA, Beijing 100072, China
2.Physics Graduate School, Shijiazhuang Railway Institute, Shijiazhuang 050043, China
3.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, whmw@sina.com
Scan for full text
Hong-Min Wang, Zhao-Yu Hou, Xiu-Ting Wang, et al.
Hong-Min Wang, Zhao-Yu Hou, Xiu-Ting Wang, et al.
The production of ,J/ψ, mesons in p+p and p+Pb collisions is studied in the framework of Color Glass Condensate together with a simple color evaporation model. Considering the nuclear effects with the Glauber-Gribov approach, we calculate the cross section and the nuclear modification factor of forward ,J/ψ, production in p+Pb collisions at ,, TeV. Then, the backward ,J/ψ, production in p+Pb collisions at ,, TeV is also analyzed. In our calculation, the phenomenology KLR-AdS/CFT model and the rcBK approach, which are valid at a small ,x, are used to calculate the three point function. It is shown that the theoretical results fit well with the experimental data from ALICE and LHCb.
Color Glass CondensateForward J/ψ productionGlauber-Gribov approach
H. Fujii, K. Watanabe, Leptons from heavy-quark semileptonic decay in pA collisions within the CGC framework. Nucl. Phys. A 951, 45 (2016). doi: 10.1016/j.nuclphysa.2016.03.045http://doi.org/10.1016/j.nuclphysa.2016.03.045
B. Ducloue, T. Lappi, H. Mantysaari, Centrality-dependent forward J/ψ production in high energy proton-nucleus collisions. EPJ Web of Conferences 112, 04002 (2016). doi: 10.1051/epjconf/201611204002http://doi.org/10.1051/epjconf/201611204002
Y.Q. Ma, R. Venugopalan, H.F. Zhang, J/ψ production and suppression in high-energy proton-nucleus collisions. Phys. Rev. D 92, 071901 (2015). doi: 10.1103/PhysRevD.92.071901http://doi.org/10.1103/PhysRevD.92.071901
H. Fujii, K. Watanabe, Nuclear modification of forward D production in pPb collisions at the LHC. arXiv: https://arxiv.org/abs/1706.06728https://arxiv.org/abs/1706.06728. Accessed 21 Jun 2017
Y.M. Shabelski, A.G. Shuvaev, I.V. Surnin, Heavy quark production in kt factorization approach at LHC energies. Int. J. Mod. Phys. A 33, 1850003 (2018). doi: 10.1142/S0217751X18500033http://doi.org/10.1142/S0217751X18500033
H.M. Wang, X.J. Sun, B.A. Zhang, xF(or y)-dependence of nuclear absorption and energy loss effects on J/ψ production. Commun. Theor. Phys. 52, 1049 (2009). doi: 10.1088/0253-6102/52/6/14http://doi.org/10.1088/0253-6102/52/6/14
R. Vogt, Shadowing and absorption effects on J/ψ production in dA collisions. Phys. Rev. C 71, 054902 (2005). doi: 10.1103/PhysRevC.71.054902http://doi.org/10.1103/PhysRevC.71.054902
E. Iancu, K. Itakura, S. Munier, Saturation and BFKL dynamics in the HERA data at small-x. Phys. Lett. B 590, 199 (2004). doi: 10.1016/j.physletb.2004.02.040http://doi.org/10.1016/j.physletb.2004.02.040
G. Soyez, Saturation QCD predictions with heavy quarks at HERA. Phys. Lett. B 655, 32 (2007). doi: 10.1016/j.physletb.2007.07.076http://doi.org/10.1016/j.physletb.2007.07.076
K. Golec-Biernat, M. Wüsthoff, Saturation effects in deep inelastic scattering at low Q2 and its implications on diffraction. Phys. Rev. D 59, 014017 (1999). doi: 10.1103/PhysRevD.59.014017http://doi.org/10.1103/PhysRevD.59.014017
H.M. Wang, Z.Y. Hou, X.J. Sun, Hadron multiplicities in p+p and p+Pb collisions at the LHC. Nucl. Sci. Tech. 25, 040502 (2014). doi: 10.13538/j.1001-8042/nst.25.040502http://doi.org/10.13538/j.1001-8042/nst.25.040502
Y.V. Kovchegov, Z. Lu, A.H. Rezaeian, Comparing AdS/CFT calculations to HERA F2 data. Phys. Rev. D 80, 074023 (2009). doi: 10.1103/PhysRevD.80.074023http://doi.org/10.1103/PhysRevD.80.074023
Y.V. Kovchegov, AdS/CFT applications to relativistic heavy-ion collisions: a brief review. Rep. Prog. Phys. 75, 12 (2012). doi: 10.1088/0034-4885/75/12/124301http://doi.org/10.1088/0034-4885/75/12/124301
D. Kharzeev, E. Levin, M. Nardi, QCD saturation and deuteron-nucleus collisions. Nucl. Phys. A 730, 448 (2004). doi: 10.1016/j.nuclphysa.2003.08.031http://doi.org/10.1016/j.nuclphysa.2003.08.031
G. Karapetyan, The nuclear configurational entropy impact parameter dependence in the Color-Glass Condensate. EPL 118, 38001 (2017). doi: 10.1209/0295-5075/118/38001http://doi.org/10.1209/0295-5075/118/38001
G. Karapetyan, Fine-tuning the Color-Glass Condensate with the nuclear configurational entropy. EPL 117, 18001 (2017). doi: 10.1209/0295-5075/117/18001http://doi.org/10.1209/0295-5075/117/18001
A.E. Bernardini, R. daRocha, Entropic information of dynamical AdS/QCD holographic models. Phys. Lett. B 762, 107 (2016). doi: 10.1016/j.physletb.2016.09.023http://doi.org/10.1016/j.physletb.2016.09.023
A.E. Bernardini, N.R.F. Braga, R. daRocha, Configurational entropy of glueball states. Phys. Lett. B 765, 81 (2017). doi: 10.1016/j.physletb.2016.12.007http://doi.org/10.1016/j.physletb.2016.12.007
N.R.F. Braga, R. daRocha, AdS/QCD duality and the quarkonia holographic information entropy. Phys. Lett. B 776, 78 (2018). doi: 10.1016/j.physletb.2017.11.034http://doi.org/10.1016/j.physletb.2017.11.034
N.R.F. Braga, R. daRocha, Configurational entropy of anti-de Sitter black holes. Phys. Lett. B 767, 386 (2017). doi: 10.1016/j.physletb.2017.02.031http://doi.org/10.1016/j.physletb.2017.02.031
A. Dumitru, D.E. Kharzeev, E.M. Levin et al., Gluon saturation in pA collisions at energies available at the CERN Large Hadron Collider: Predictions for hadron multiplicities. Phys. Rev. C 85, 044920 (2012). doi: 10.1103/PhysRevC.85.044920http://doi.org/10.1103/PhysRevC.85.044920
H.M. Wang, J.F. Liu, Z.Y. Hou et al., Pseudo-rapidity distributions of charged hadrons in pp and pA collisions at the LHC. Chin. Phys. C 37, 084102 (2013). doi: 10.1088/1674-1137/37/8/084102http://doi.org/10.1088/1674-1137/37/8/084102
H. Fujii, K. Watanabe, Heavy quark pair production in high-energy pA collisions: Quarkonium. Nucl. Phys. A 915, 1 (2013). doi: 10.1016/j.nuclphysa.2013.06.011http://doi.org/10.1016/j.nuclphysa.2013.06.011
S. Kretzer, H.L. Lai, F.I. Olness et al., CTEQ6 parton distributions with heavy quark mass effects. Phys. Rev. D 69, 114005 (2004). doi: 10.1103/PhysRevD.69.114005http://doi.org/10.1103/PhysRevD.69.114005
J.L. Albacete, N. Armesto, J.G. Milhano et al., Nonlinear QCD meets data: A global analysis of lepton-proton scattering with running coupling Balitsky-Kovchegov evolution. Phys. Rev. D 80, 034031 (2009). doi: 10.1103/PhysRevD.80.034031http://doi.org/10.1103/PhysRevD.80.034031
M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high-energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205 (2007). doi: 10.1146/annurev.nucl.57.090506.123020http://doi.org/10.1146/annurev.nucl.57.090506.123020
C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). doi: 10.1016/j.ppnp.2018.01.002http://doi.org/10.1016/j.ppnp.2018.01.002
U. Heinz, J.S. Moreland, Energy dependent growth of the nucleon and hydrodynamic initial conditions. Phys. Rev. C 84, 054905 (2011). doi: 10.1103/PhysRevC.84.054905http://doi.org/10.1103/PhysRevC.84.054905
H. Fujii, F. Gelis, R. Venugopalan, Quark pair production in high energy pA collisions: General features. Nucl. Phys. A 780, 146 (2006). doi: 10.1016/j.nuclphysa.2006.09.012http://doi.org/10.1016/j.nuclphysa.2006.09.012
ALICE Collaboration, Measurement of quarkonium production at forward rapidity in pp collisions at =7 TeV. Eur. Phys. J. C 74, 2974 (2014). doi: 10.1140/epjc/s10052-014-2974-4http://doi.org/10.1140/epjc/s10052-014-2974-4
ALICE Collaboration, J/ψ production and nuclear effects in p-Pb collisions at TeV. JHEP 1402, 073 (2014). doi: 10.1007/JHEP02(2014)073http://doi.org/10.1007/JHEP02(2014)073
LHCb Collaboration, Study of J/ψ production and cold nuclear matter effects in pPb collisions at . JHEP 1402, 072 (2014). doi: 10.1007/JHEP02(2014)072http://doi.org/10.1007/JHEP02(2014)072
ALICE Collaboration, Charmonium Production at forward rapidity in pp, p-Pb and Pb-Pb collisions, with ALICE. http://lanl.arxiv.org/abs/1409.4458http://lanl.arxiv.org/abs/1409.4458. Accessed 15 Sep 2014
LHCb Collaboration, Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at =8.16 TeV. Phys. Lett. B 774, 159 (2017). doi: 10.1016/j.physletb.2017.09.058http://doi.org/10.1016/j.physletb.2017.09.058
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution