Bulent Buyuk. Preparation and characterization of iron-ore-imbedded silicone rubber materials for radiation protection. [J]. Nuclear Science and Techniques 29(9):135(2018)
DOI:
Bulent Buyuk. Preparation and characterization of iron-ore-imbedded silicone rubber materials for radiation protection. [J]. Nuclear Science and Techniques 29(9):135(2018) DOI: 10.1007/s41365-018-0459-0.
Preparation and characterization of iron-ore-imbedded silicone rubber materials for radiation protection
摘要
Abstract
Iron-ore-imbedded silicone rubber materials were produced for radiation shielding. Samples were tested against a Co-60 gamma source, which is widely used in nuclear technology and medicine. Decreasing the particle size of iron ore resulted in better gamma radiation protection owing to more homogenous distribution. In addition, the materials had flexible properties up to the addition of 60 wt.% iron ore content. Further, 0.5 mmPbE gamma protection was provided by using 2.06 mm thick SDT_60 as the Co-60 source. Iron ore–silicone rubber composites are candidate materials for lead-free flexible radiation protection systems owing to their relatively inexpensive and easy production.
关键词
Keywords
Iron oreSilicone rubberRadiation shieldingCo-60Lead-free flexible materialsLinear attenuation coefficients
references
R. F. Zhou, X. J. Zhou, X. B. Li et al., Radiation protection in the design of γ-ray industrial computed tomography systems. Nucl. Sci. Tech., 27, 100 (2016). doi: 10.1007/s41365-016-0077-7http://doi.org/10.1007/s41365-016-0077-7
R. A. Powsner, E. R. Powsner,. ‘Essential Nuclear Medicine Physics’. 2nd Ed., ISBN: 978-1-4051-0484-5, Blackwell Pub., Massachussets, USA, (2006).
J. K. Shultis, R. E. Faw,. ‘Fundamentals of Nuclear Science and Engineering’, ISBN: 0-8247-0834-2, Marcel-Dekker Inc., New York, USA, (2002).
J. P. McCaffrey, F. Tessier, H. Shen, Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med. Phys., 39, 4537-4546 (2012). doi: 10.1118/1.4730504http://doi.org/10.1118/1.4730504
H. Mori, K. Koshida, O. Ishigamori et al., Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields. Radiol. Phys. and Tech. 7, 158-166 (2014). doi: 10.1007/s12194-013-0246-xhttp://doi.org/10.1007/s12194-013-0246-x
Directive 2002/95/Ec Of The European Parliament And Of The Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, OJ L37, 19-23, (2003). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0095&from=ENhttp://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0095&from=EN
Directive 2011/65/Eu Of The European Parliament And Of The Council of 8 June 2011on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast) Official Journal of the European Union, OJ L174, 88-110, (2011). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011L0065&from=ENhttp://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011L0065&from=EN
R. Grob, D. Bunke, C. O. Gensch et al., Study on Hazardous Substances in Electrical and Electronic Equipment, not Regulated by the RoHS Directive (2008), http://ec.europa.eu/environment/waste/weee/pdf/hazardous_substances_report.pdfhttp://ec.europa.eu/environment/waste/weee/pdf/hazardous_substances_report.pdf
Bagheri N., Comparing the Effect of Different Metal Plates and Lead Apron for Reducing the Dose Rate from Cs-137 and Ba-133 Gamma Ray. Int. J. of Eng. Res. and Appl., 3 (4), 965-969 (2013).
J. P. McCaffrey, H. Shen, B. Downton, et al., Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys., 34, 530-537 (2007). doi: 10.1118/1.2426404http://doi.org/10.1118/1.2426404
V. P. Singh, N. M. Badiger, S. Kothan et al., Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses. Nucl. Sci. Tech. 27, 103(2016). doi: 10.1007/s41365-016-0099-1http://doi.org/10.1007/s41365-016-0099-1
A. B. Azeez, S. Kahtan, K. S. Mohammed et al., Design of flexible green anti radiation shielding material against gamma-ray. Mat. Plast., 51 (3), 300-308, (2014). http://www.revmaterialeplastice.ro/pdf/AZZEZ%20A.pdf%203%2014.pdfhttp://www.revmaterialeplastice.ro/pdf/AZZEZ%20A.pdf%203%2014.pdf
H. O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Tech. 28, 95, (2017). doi: 10.1007/s41365-017-0253-4http://doi.org/10.1007/s41365-017-0253-4
G. P. Singh, R. Sundeep, R. P. Choudhary et al. Iron Ore Pelletization Technology and its Environmental Impact Assessment in Eastern Region of India-A Case Study. Procedia Earth Planet. Sci. 11, 582-597, (2015). doi: 10.1016/j.proeps.2015.06.060http://doi.org/10.1016/j.proeps.2015.06.060
L. Wu, X. Wang, L. Ning et al., Improvement of silicone rubber properties by addition of nano-SiO2 particles. J. Appl. Biomater. Funct. Mater., 14 (Suppl. 1), S11-S14, (2016) doi: 10.5301/jabfm.5000298http://doi.org/10.5301/jabfm.5000298
F. Buyl, Silicone sealants and structural adhesives. Int. J. Adhes. Adhes., 21, 411-422, (2001). doi: 10.1016/S0143-7496(01)00018-5http://doi.org/10.1016/S0143-7496(01)00018-5
B. Buyuk, A. B. Tugrul, Comparison of Lead and WC-Co Materials against Gamma Irradiation. Acta Phys. Pol. A, 125, 423-425, (2014). doi: 10.12693/APhysPolA.125.423http://doi.org/10.12693/APhysPolA.125.423
J. H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Is. 33, 1269-1290, (1982). doi: 10.1016/0020-708X(82)90248-4http://doi.org/10.1016/0020-708X(82)90248-4