1.Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2.China Academy of Electronic and Information Technology, Beijing 100041, China
Corresponding author, E-mail address: liugp@lzu.edu.cn
yangjh@lzu.edu.cn
Scan for full text
Gui-Peng Liu, Xin Wang, Meng-Nan Li, et al. Effects of high-energy proton irradiation on separate absorption and multiplication GaN avalanche photodiode. [J]. Nuclear Science and Techniques 29(10):139(2018)
Gui-Peng Liu, Xin Wang, Meng-Nan Li, et al. Effects of high-energy proton irradiation on separate absorption and multiplication GaN avalanche photodiode. [J]. Nuclear Science and Techniques 29(10):139(2018) DOI: 10.1007/s41365-018-0480-3.
The effect of high-energy proton irradiation on GaN based ultraviolet avalanche photodiodes (APDs) is investigated. The dark current of the GaN APD is calculated as a function of the proton energy and proton fluences. By considering the diffusion, generation-recombination, local hopping conductivity, band-to-band tunneling, and trap-assisted tunneling currents, we found that the dark current increases as the proton fluence increases, but decreases with increasing proton energy.
Proton irradiationGaN avalanche photodiode (APD)Dark currentDetectors
J. Duboz, E. Frayssinet, S. Chenot, et al., X-ray detector based on GaN, Proc. of SPIE, 86251W (2013). doi: 10.1117/12.2007827http://doi.org/10.1117/12.2007827
H.C. Chiamori, R. Miller, A. Suria, et al., Irradiation effects of graphene-enhanced gallium nitride (GaN) metal-semiconductor-metal (MSM) ultraviolet photodetectors, SPIE Sensing Technology + Applications, 949107 (2015). doi: 10.1117/12.2178091http://doi.org/10.1117/12.2178091
M. Chen, J.-K. Sheu, M.-L. Lee, et al., Improved performance of planar GaN-based p-i-n photodetectors with Mg-implanted isolation ring, Appl. Phys. Lett., 89, 183509 (2006). doi: 10.1063/1.2372767http://doi.org/10.1063/1.2372767
R. D. Dupuis, J.-H. Ryou, S.-C. Shen, et al., Growth and fabrication of high-performance GaN-based ultraviolet avalanche photodiodes, J. Cryst. Growth, 310, 5217-5222 (2008). doi: 10.1016/j.jcrysgro.2008.07.107http://doi.org/10.1016/j.jcrysgro.2008.07.107
A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, et al., Radiation hardness of gallium nitride, IEEE Trans. Nucl. Sci., 49, 2733-2738 (2002). doi: 10.1109/TNS.2002.805363http://doi.org/10.1109/TNS.2002.805363
M. Gussenhoven, E. Mullen, D. Brautigam, Improved understanding of the Earth's radiation belts from the CRRES satellite, IEEE Trans. Nucl. Sci., 43, 353-368 (1996). doi: 10.1109/23.490755http://doi.org/10.1109/23.490755
S. Verghese, K. McIntosh, R.J. Molnar, et al., GaN avalanche photodiodes operating in linear-gain mode and Geiger mode, IEEE Trans. Electron Devices, 48, 502-511 (2001). doi: 10.1109/16.906443http://doi.org/10.1109/16.906443
Y. Zhou, C. Ahyi, C.-C. Tin, et al., Fabrication and device characteristics of Schottky-type bulk GaN-based “visible-blind” ultraviolet photodetectors, Appl. Phys. Lett. 90, 121118 (2007). doi: 10.1063/1.2715114http://doi.org/10.1063/1.2715114
J. L. Pau, C. Bayram, R. McClintock, et al. Back-illuminated separate absorption and multiplication GaN avalanche photodiodes, Appl. Phys. Lett., 92, 101120-1-101120-3 (2008). doi: 10.1063/1.2897039http://doi.org/10.1063/1.2897039
M.-H. Ji, J. Kim, T. Detchprohm, et al. p-i-p-i-n Separate Absorption and Multiplication Ultraviolet Avalanche Photodiodes, IEEE Photon. Technol. Lett., 30, 181-184, (2018). doi: 10.1109/LPT.2017.2779798http://doi.org/10.1109/LPT.2017.2779798
Z. Shao, D. Chen, Y. Liu, et al., Significant performance improvement in AlGaN solar-blind avalanche photodiodes by exploiting the built-in polarization electric field, IEEE J. Sel. Topics Quantum Electron., 20, 187-192 (2014). doi: 10.1109/JSTQE.2014.2328437http://doi.org/10.1109/JSTQE.2014.2328437
X. Wang, W. Hu, M. Pan, et al., Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes, J. Appl. Phys., 115, 013103 (2014). doi: 10.1063/1.4861148http://doi.org/10.1063/1.4861148
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM-The stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At., 268, 1818-1823 (2010). doi: 10.1016/j.nimb.2010.02.091http://doi.org/10.1016/j.nimb.2010.02.091
U Saha, K Devan, S Ganesan, A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013, J. Nucl. Mater., 503 30-41 (2018). doi: 10.1016/j.jnucmat.2018.02.039http://doi.org/10.1016/j.jnucmat.2018.02.039
H.-Y. Kim, J. Kim, L. Liu, et al., Effects of proton irradiation energies on degradation of AlGaN/GaN high electron mobility transistors, J. Vac. Sci. Technol. B, 30, 012202 (2012). doi: 10.1116/1.3676034http://doi.org/10.1116/1.3676034
S.J. Pearton, R. Deist, F. Ren, et al., Review of radiation damage in GaN-based materials and devices, J. Vac. Sci. Technol. A Vac. Surf. Films, 31, 050801 (2013). doi: 10.1116/1.4799504http://doi.org/10.1116/1.4799504
S. Messenger, E. Burke, G. Summers, et al., Nonionizing energy loss (NIEL) for heavy ions, IEEE Trans. Nucl. Sci., 46, 1595-1602 (1999). doi: 10.1109/23.819126http://doi.org/10.1109/23.819126
I. Jun, M.A. Xapsos, S.R. Messenger, et al., Proton nonionizing energy loss (NIEL) for device applications, IEEE Trans. Nucl. Sci., 50, 1924-1928 (2003). doi: 10.1109/TNS.2003.820760http://doi.org/10.1109/TNS.2003.820760
F. Gao, N. Chen, E. Hernandez-Rivera, et al., Displacement damage and predicted non-ionizing energy loss in GaAs, J. Appl. Phys., 121, 095104 (2017). doi: 10.1063/1.4977861http://doi.org/10.1063/1.4977861
S.M. Sze, K.K. Ng, Metal-semiconductor contacts, Physics of semiconductor devices, (2006) 134-196.
S. Forrest, R. Leheny, R. Nahory, et al., In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling, Appl. Phys. Lett., 37, 322-325 (1980). doi: 10.1063/1.91922http://doi.org/10.1063/1.91922
D. Monroe, Hopping in exponential band tails, Physical Review Letters, 54, 146 (1985). doi: 10.1103/PhysRevLett.54.146http://doi.org/10.1103/PhysRevLett.54.146
T. Tiedje, A. Rose, A physical interpretation of dispersive transport in disordered semiconductors, Solid State Commun., 37, 49-52 (1981). doi: 10.1016/0038-1098(81)90886-3http://doi.org/10.1016/0038-1098(81)90886-3
N. Bochkareva, V. Voronenkov, R. Gorbunov, et al., Hopping conductivity and dielectric relaxation in Schottky barriers on GaN, Semic, 51, 1186-1193 (2017). doi: 10.1134/S1063782617090068http://doi.org/10.1134/S1063782617090068
C. Qiu, C. Hoggatt, W. Melton, et al., Study of defect states in GaN films by photoconductivity measurement, Appl. Phys. Lett., 66, 2712-2714 (1995). doi: 10.1063/1.113497http://doi.org/10.1063/1.113497
D. V. Kuksenkov, H. Temkin, Low-frequency noise and performance of GaN p-n junction photodetectors, J. Appl. Phys., 83, 2142-2146 (1998). doi: 10.1063/1.366950http://doi.org/10.1063/1.366950
J.P. Donnelly, E.K. Duerr, K.A. McIntosh, et al., Design considerations for 1.06-μm InGaAsP-InP Geiger-mode avalanche photodiodes, IEEE J. Quantum Electron., 42, 797-809 (2006). doi: 10.1109/JQE.2006.877300http://doi.org/10.1109/JQE.2006.877300
P. Muret, A. Philippe, E. Monroy, et al., Properties of a hole trap in n-type hexagonal GaN, J. Appl. Phys., 91, 2998-3001 (2002). doi: 10.1063/1.1433935http://doi.org/10.1063/1.1433935
D.C. Look, Defect-Related Donors, Acceptors, and Traps in GaN, physica status solidi (b), 228, 293-302 (2001). doi: 10.1002/1521-3951(200111)228:1<293::AID-PSSB293>3.0.CO;2-Fhttp://doi.org/10.1002/1521-3951(200111)228:1<293::AID-PSSB293>3.0.CO;2-F
M.A. Reshchikov, H. Morkoç, Luminescence properties of defects in GaN, J. Appl. Phys., 97, 5-19 (2005). doi: 10.1063/1.1868059http://doi.org/10.1063/1.1868059
S.-F. Tang, H.-H. Hsieh, H.-Y. Tu, et al., Investigations for InAs/GaAs multilayered quantum-dot structure treated by high energy proton irradiation, Thin Solid Films, 518, 7425-7428 (2010). doi: 10.1016/j.tsf.2010.05.009http://doi.org/10.1016/j.tsf.2010.05.009
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution