Xiong Yang, Yan-Tao Gao, Yang Zhong, et al. Stress analysis of the TMSR graphite component under irradiation conditions. [J]. Nuclear Science and Techniques 29(12):173(2018)
DOI:
Xiong Yang, Yan-Tao Gao, Yang Zhong, et al. Stress analysis of the TMSR graphite component under irradiation conditions. [J]. Nuclear Science and Techniques 29(12):173(2018) DOI: 10.1007/s41365-018-0516-8.
Stress analysis of the TMSR graphite component under irradiation conditions
摘要
Abstract
TMSR uses nuclear graphite as a neutron moderator, a reflector, and the structural material, and utilizes molten salt as a coolant. When running normally, the graphite components are immersed in the molten salt. Thus, the nuclear graphite comes into direct contact with the molten salt, which infiltrate the open pores of the nuclear graphite. This infiltration may influence the stress analysis of the graphite component. In this study, a User MATerial (UMAT) subroutine was used to analyze the stress distribution of the graphite component, both with and without molten salt infiltration. Many influence factors were taken into consideration, such as the dose gradient, the shape of the permeation zone, and the permeation area. The results show that the dose gradient, shape, and area of the permeation zone all significantly influence the stress distribution. Furthermore, the results of the stress analysis indicate that for a regular graphite component with a square cross-section, the peak maximum principal stress value occurs at the center of the cross-section, and the symmetry of the maximum principal stress distributions was modified by quarter circle and half ellipse permeation zones.
关键词
Keywords
Nuclear graphiteStress analysisIrradiationPermeation zone
references
E.S. Bettis, R.W. Schroeder, G.A. Cristy et al. The Aircraft Reactor Experiment-Design and Construction. Nucl. Sci. Tech. 1957, 2(6): 804-825. doi: 10.13182/NSE57-A35495http://doi.org/10.13182/NSE57-A35495
P.N. Haubenreich and R.J. Engel. Experience with the molten-salt reactor experiment.Nuclear Application & Technology. 1970, 8(2): 118-136. doi: 10.13182/NT8-2-118http://doi.org/10.13182/NT8-2-118
Y. Shimazu. Nuclear Safety Analysis of a Molten-Salt Breeder Reactor. J. Nucl. Sci. Tehcnol. 1978, 15(7): 514-522. doi: 10.1080/18811248.1978.9735543http://doi.org/10.1080/18811248.1978.9735543
T. Abram and S. Ion. Generation-IV nuclear power: A review of the state of the science. Energy Policy, 2008, 36(12): 4323-4330. doi: 10.1016/j.enpol.2008.09.059http://doi.org/10.1016/j.enpol.2008.09.059
L. Samalova, O. Chvala, G.I. Maldonado. Comparative economic analysis of the Integral Molten Salt Reactor and an advanced PWR using the G4-ECONS methodology. ANN NUCL ENERGY, 2016, 99: 258-265. doi: 10.1016/j.anucene.2016.09.001http://doi.org/10.1016/j.anucene.2016.09.001
T. Schönfeldt, E.B. Klinkby, K.H. Klenø et al. Conceptual design of a thorium supplied thermal molten salt wasteburner. 17th Meeting on Reactor Physicsin the Nordic Countries, Göteborg, Editor. 2015: Sweden.
S.R. Greene, J.C. Gehin, D.E. Holcomb et al. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)[R]. 2011, Oak Ridge National Laboratory (ORNL): United States.
Z.T. He, L.N. Gao, W. Qi et al. Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure. Carbon, 2015, 84: 511-518. doi: 10.1016/J.CARBON.2014.12.044http://doi.org/10.1016/J.CARBON.2014.12.044.
Y. Zhong, X. Yang, D. Ding, et al. Numerical study of the dynamic characteristics of a single-layer graphite core in a thorium molten salt reactor. Nucl. Sci. Tech. 2018, 29: 141 doi: 10.1007/s41365-018-0488-8http://doi.org/10.1007/s41365-018-0488-8
K. Furukawa, L.B. Erbay, and A. Aykol. A study on a symbiotic thorium breeding fuel-cycle: THORIMS-NES through FUJI. Energy Convers. Manage. 2012, 63(6): 51-54. doi: 10.1016/j.enconman.2012.01.030http://doi.org/10.1016/j.enconman.2012.01.030.
G.W. Scherer. Stress from crystallization of salt. Cem. Concr. Compos. 2004, 34(9): 1613-1624. doi: 10.1016/j.cemconres.2003.12.034http://doi.org/10.1016/j.cemconres.2003.12.034
R.B. Briggs, W.H. Cook, and A. Taboada. Modifications to Specifications for MSRE Graphite. 1963: United States. doi: 10.2172/1334752http://doi.org/10.2172/1334752
D.K.L. Tsang and B.J. Marsden. Constitutive material model for the prediction of stresses in irradiated anisotropic graphite components. J. Nucl. Mater., 2008, 381(1-2): 129-136. doi: 10.1016/j.jnucmat.2008.07.025http://doi.org/10.1016/j.jnucmat.2008.07.025
D.K.L. Tsang and B.J. Marsden. The development of a stress analysis code for nuclear graphite components in gas-cooled reactors. J. Nucl. Mater. 2006, 350(3): 208-220. doi: 10.1016/j.jnucmat.2006.01.015http://doi.org/10.1016/j.jnucmat.2006.01.015
D.K.L. Tsang and B.J. Marsden. Effects of dimensional change strain in nuclear graphite component stress analysis. Nucl. Eng. Des. 2007, 237(9): 897-904. doi: 10.1016/j.nucengdes.2006.01.015http://doi.org/10.1016/j.nucengdes.2006.01.015
B.J. Marsden, M. Haverty, W. Bodel et al. Dimensional change, irradiation creep and thermal/mechanical property changes in nuclear graphite. Int. Mater. Rev., 2016, 61(3): 155-182. doi: 10.1080/09506608.2015.1136460http://doi.org/10.1080/09506608.2015.1136460
Ion-beam-assisted characterization of quinoline insoluble particles in nuclear graphite
Experimental study on the oxidation behavior and microstructural evolution of NG-CT-10 and NG-CT-20 nuclear graphite
Effects of energy deposition on mechanical properties of sodium borosilicate glass irradiated by three heavy ions: P, Kr, and Xe
Effects of thermal aging on Fe ion-irradiated Fe-0.6%Cu alloy investigated by positron annihilation
Radiation synthesis of polymer/clay nanocomposite hydrogels with high mechanical strength
Related Author
No data
Related Institution
School of Physics, State Key Laboratory of Crystal Materials, Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advance Materials (MOE), School of Materials Science and Engineering, Tsinghua University
Department of Engineering Physics, Tsinghua University
School of Nuclear Science and Technology, Lanzhou University