1.School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, mahongjuan@sinap.ac.cn,
zhaoxiaoyan@cczu.edu.cn
Scan for full text
Xiao Xu, Xiao-Jun Ding, Jun-Xuan Ao, et al. Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. [J]. Nuclear Science and Techniques 30(2):20(2019)
Xiao Xu, Xiao-Jun Ding, Jun-Xuan Ao, et al. Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. [J]. Nuclear Science and Techniques 30(2):20(2019) DOI: 10.1007/s41365-019-0543-0.
A novel amidoxime-based fibrous adsorbent, denoted as PE/PP-,g,-(PAAc-,co,-PAO), was prepared by pre-irradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin-core (PE/PP) fibers using ,60,Co γ-ray irradiation, followed by amidoximation. The original and modified PE/PP fibers were characterized by a series of characterization methods to demonstrate the attachment of amidoxime (AO) groups onto the PE/PP fibers. Breaking strength tests confirmed that the fibrous adsorbent could maintain good mechanical properties. The adsorption capacity of the PE/PP- ,g,-(PAAc-,co,-PAO) fibers was investigated in simulated seawater with an initial uranium concentration of 330 μg/L. The uranium adsorption capacity was 2.27 mg/g-adsorbent after 24 h in simulated seawater, and the equilibrium data were well-described by the Freundlich isotherm model. The PE/PP- ,g,-(PAAc-,co,-PAO) adsorbent exhibited good regeneration and recyclability during five adsorption-desorption cycles. The adsorption test was also performed in simulated radioactive effluents with uranium concentrations of 10 and 100 μg/L. The effect of the pH value on the adsorption capacity was also studied. At a very low initial concentration 10 μg/L solution, the PE/PP- ,g,-(PAAc-,co,-PAO) fiber could remove as much as 93.0% of the uranium, and up to 71.2% of the uranium in the simulated radioactive effluent. These results indicated that the PE/PP-,g,-(PAAc-,co,-PAO) adsorbent could be used in radioactive effluents over a wide range of pH values. Therefore, the PE/PP-,g,-(PAAc-,co,-PAO) fibers, with their high uranium selectivity, good regeneration and recyclability, good mechanical properties, and low cost, are promising adsorbents for extracting uranium from aqueous solutions.
Amidoxime groupsPre-irradiationPE-coated PP skin-core fiberAdsorptionUranium
J. Zeng, H. Zhang, Y. Sui, et al., New Amidoxime-Based Material TMP-g-AO for Uranium Adsorption under Seawater Conditions. Ind. Eng. Chem. Res. 56, 5021-5032 (2017). doi: 10.1021/acs.iecr.6b05006http://doi.org/10.1021/acs.iecr.6b05006
R.T. Mayes, J. Górka, S. Dai. Impact of pore size on the sorption of uranyl under seawater conditions. Ind. Eng. Chem. Res. 55, 4339-4343 (2016). doi: 10.1021/acs.iecr.5b03698http://doi.org/10.1021/acs.iecr.5b03698
N. Seko, A. Katakai, S. Hasegawa, et al., Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl. Technol. 144, 274-278 (2003). doi: 10.13182/NT03-2http://doi.org/10.13182/NT03-2
S.D. Alexandratos, X. Zhu, M. Florent, et al., Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Ind. Eng. Chem. Res. 55, 4208-4216 (2016). doi: 10.1021/acs.iecr.5b03742http://doi.org/10.1021/acs.iecr.5b03742
Q. Gao, J. Hu, R. Li, et al., Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat. Phys. Chem. 122, 1-8 (2016). doi: 10.1016/j.radphyschem.2015.12.023http://doi.org/10.1016/j.radphyschem.2015.12.023
H.B. Pan, L.J. Kuo, C.M Wai, et al., Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater. Ind. Eng. Chem. Res. 55, 4313-4320 (2015). doi: 10.1021/acs.iecr.5b03307http://doi.org/10.1021/acs.iecr.5b03307
H.I. Lee, J.H. Kim, J.M. Kim, et al., Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions, J. Nanosci. Nanotechnol. 10, 217-221 (2010). doi: 10.1166/jnn.2010.1498http://doi.org/10.1166/jnn.2010.1498
S. Duan, X. Liu, Y. Wang, et al. Plasma surface modification of materials and their entrapment of water contaminant: A review. Plasma. Process. Polym. 14, 1600218 (2017). doi: 10.1002/ppap.201600218http://doi.org/10.1002/ppap.201600218
S. Duan, X. Xu, X. Liu, et al. Highly enhanced adsorption performance of U (VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. J. Colloid. Interf. Sci. 513, 92-103 (2018). doi: 10.1016/j.jcis.2017.11.008http://doi.org/10.1016/j.jcis.2017.11.008
H. Yu, S. Yang, H. Ruan, et al., Recovery of U(VI) solutionss from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl. Clay. Sci. 111, 67-75 (2015). doi: 10.1016/j.clay.2015.01.035http://doi.org/10.1016/j.clay.2015.01.035
W. Li, L.D. Troyer, S.S. Lee, et al., Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings. Acs. Appl. Mater. Inter. 9, 13163-13172 (2017). doi: 10.1021/acsami.7b01042http://doi.org/10.1021/acsami.7b01042
H.S. Zhu, S.X. Duan, L. Chen, et al. Plasma-induced grafting of acrylic acid on bentonite for the removal of U (VI) from aqueous solution. Plasma. Sci. Technol. 19, 115501 (2017). doi: 10.1088/2058-6272/aa8168http://doi.org/10.1088/2058-6272/aa8168
M. Kanno, Present Status of Study on Extraction of Uranium from Sea-Water. J. Nucl. Sci. Technol. 21, 1-9 (1984). doi: 10.3327/jnst.21.1http://doi.org/10.3327/jnst.21.1
W.J. Williams, A.H. Gillam, Separation of Uranium from Seawater by Adsorbing Colloid Flotation. Analyst. 103, 1239-1243 (1978).doi: 10.1039/AN9780301239http://doi.org/10.1039/AN9780301239
L.C. Tan, Q. Liu, X.Y. Jing, et al., Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem. Eng. J. 273, 307-315 (2015). doi: 10.1016/j.cej.2015.01.110http://doi.org/10.1016/j.cej.2015.01.110
L.C. Tan, J. Wang, Q. Liu, et al., Facile preparation of oxine functionalized magnetic Fe3O4 particles for enhanced uranium (VI) adsorption. Colloid. Surface. A. 466, 85-91 (2015). doi: 10.1016/j.colsurfa.2014.11.020http://doi.org/10.1016/j.colsurfa.2014.11.020
T. Kawai, K. Saito, K. Sugita, et al., Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind. Eng. Chem. Res. 39, 2910-2915 (2000). doi: 10.1021/ie990474ahttp://doi.org/10.1021/ie990474a
Z. Xing, J.T. Hu, M.H. Wang, et al., Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci. China. Chem. 56, 1504-1509 (2013). doi: 10.1007/s11426-013-5002-xhttp://doi.org/10.1007/s11426-013-5002-x
H.H. Zhao, X.Y. Liu, M. Yu, et al., A Study on the Degree of Amidoximation of Polyacrylonitrile Fibers and Its Effect on Their Capacity to Adsorb Uranyl Ions. Ind. Eng. Chem. Res. 54, 3101-3106 (2015). doi: 10.1021/ie5045605http://doi.org/10.1021/ie5045605
S.Y. Xie, X.Y. Liu, B.W. Zhang, et al., Electrospun nanofibrous adsorbents for uranium extraction from seawater. J. Mater. Chem. A. 3, 2552-2558 (2015). doi: 10.1039/C4TA06120Ahttp://doi.org/10.1039/C4TA06120A
C. Gunathilake, J. Gorka, S. Dai, et al., Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A. 3, 11650-11659 (2015). doi: 10.1039/C5TA02863Ahttp://doi.org/10.1039/C5TA02863A
A. Zhang, G. Uchiyama, T. Asakura. Dynamic-state adsorption and elution behaviour of uranium (VI) ions from seawater by a fibrous and porous adsorbent containing amidoxime chelating functional groups. Adsorpt. Sci. Technol. 21, 761-773 (2003). doi: 10.1260/026361703773581812http://doi.org/10.1260/026361703773581812
L.J. Kuo, C.J. Janke, J.R. Wood, et al., Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater. Ind. Eng. Chem. Res. 55, 4285-4293 (2015). doi: 10.1021/acs.iecr.5b03267http://doi.org/10.1021/acs.iecr.5b03267
S. Das, C. Tsouris, C. Zhang, et al., Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters. Ind. Eng. Chem. Res. 55, 4294-4302 (2015). doi: 10.1021/acs.iecr.5b02735http://doi.org/10.1021/acs.iecr.5b02735
Y. Oyola, S. Vukovic, S. Dai, Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater. Dalton. T. 45, 8532-8540 (2016). doi: 10.1039/C6DT00347Hhttp://doi.org/10.1039/C6DT00347H
T. Saito, S. Brown, S. Chatterjee, et al., Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A. 2, 14674-14681 (2014). doi: 10.1039/C4TA03276Dhttp://doi.org/10.1039/C4TA03276D
H.B. Pan, L.J. Kuo, J. Wood, et al., Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater. Rsc. Adv. 5, 100715-100721 (2015). doi: 10.1039/C5RA14095Ahttp://doi.org/10.1039/C5RA14095A
N. Seko, A. Katakai, M. Tamada, et al., Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater. Sep. Sci. Technol. 39, 3753-3767 (2004). doi: 10.1081/SS-200042997http://doi.org/10.1081/SS-200042997
M. Tamada. Current status of technology for collection of uranium from seawater. JAEA. (2009). doi: 10.1142/9789814327503_0026http://doi.org/10.1142/9789814327503_0026
M. Kanno. Present status of study on extraction of uranium from sea water. J. Nucl. Sci. Technol. 21, 1-9 (1984). doi: 10.3327/jnst.21.1http://doi.org/10.3327/jnst.21.1
R.V. Reis, A. Zydney. Bioprocess membrane technology. J. Membrane. Sci. 297, 16-50 (2007). doi: 10.1016/j.memsci.2007.02.045http://doi.org/10.1016/j.memsci.2007.02.045
G.A. Tularam, M. Ilahee. Environmental concerns of desalinating seawater using reverse osmosis. J. Environ. Monitor. 9, 805-813 (2007). doi: 10.1039/B708455Mhttp://doi.org/10.1039/B708455M
H.J. Schenk, L. Astheimer, E.G. Witte, et al., Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 17, 1293-1308 (1982). doi: 10.1080/01496398208056103http://doi.org/10.1080/01496398208056103
J. Kim, C. Tsouris, Y. Oyola, et al., Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: Field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076-6083 (2014). doi: 10.1021/ie4039828http://doi.org/10.1021/ie4039828
J. Kim, Y. Oyola, C. Tsouris, et al., Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind. Eng. Chem. Res. 52, 9433-9440 (2013). doi: 10.1021/ie400587fhttp://doi.org/10.1021/ie400587f
J. Hu, H. Ma, Z. Xing, et al., Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind. Eng. Chem. Res. 55, 4118-4124 (2015). doi: 10.1021/acs.iecr.5b03175http://doi.org/10.1021/acs.iecr.5b03175
H. Ma, H. Chi, J. Wu, et al., A novel avenue to gold nanostructured microtubes using functionalized fiber as the ligand, the reductant, and the template. Acs. Appl. Mater. Inter. 5, 8761-8765 (2013). doi: 10.1021/am402574bhttp://doi.org/10.1021/am402574b
X. Liu, J. Ao, X. Yang, et al., Green and efficient synthesis of an adsorbent fiber by preirradiation-induced grafting of PDMAEMA and its Au(III) adsorption and reduction performance. J. Appl. Polym. Sci. 134, (2017). doi: 10.1002/app.44955http://doi.org/10.1002/app.44955
R. Li, H. Ma, Z. Xing, et al., Synergistic effects of different co-monomers on the uranium adsorption performance of amidoximated polyethylene nonwoven fabric in natural seawater. J. Radioanal. Nucl. Ch. 315, 111-117 (2018). doi: 10.1007/s10967-017-5639-6http://doi.org/10.1007/s10967-017-5639-6
R. Li, L. Pang, H. Ma, et al., Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity. J. Radioanal. Nucl. Ch. 311, 1771-1779 (2017). doi: 10.1007/s10967-016-5117-6http://doi.org/10.1007/s10967-016-5117-6
A.R. Horrocks, J. Zhang, M.E. Hall. Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation. Polym. Int. 33, 303-314 (1994). doi: 10.1002/pi.1994.210330310http://doi.org/10.1002/pi.1994.210330310
C. Ling, X. Liu, X. Yang, et al., Uranium Adsorption Tests of Amidoxime-Based Ultrahigh Molecular Weight Polyethylene Fibers in Simulated Seawater and Natural Coastal Marine Seawater from Different Locations. Ind. Eng. Chem. Res. 56, 1103-1111 (2017). doi: 10.1021/acs.iecr.6b04181http://doi.org/10.1021/acs.iecr.6b04181
T. Suzuki, K. Saito, T. Sugo, et al. Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal. Sci. 16, 429-432 (2000). doi: 10.2116/analsci.16.429http://doi.org/10.2116/analsci.16.429
A. Zhang, G. Uchiyama, T. Asakura. pH Effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React. Funct. Polym. 63, 143-153 (2005). doi: 10.1016/j.reactfunctpolym.2005.02.015http://doi.org/10.1016/j.reactfunctpolym.2005.02.015
N. Horzum, T. Shahwan, O. Parlak, et al. Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chem. Eng. J. 213, 41-49 (2012). doi: 10.1016/j.cej.2012.09.114http://doi.org/10.1016/j.cej.2012.09.114
N.K. Sethy, R.M. Tripathi, V.N. Jha, et al., Assessment of natural uranium in the ground water around jaduguda uranium mining complex, India. J. Environ. Prot. Ecol. 2, 1002 (2011). doi: 10.4236/jep.2011.27115http://doi.org/10.4236/jep.2011.27115
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution