1.Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China
2.University of the Chinese Academy of Science, Beijing 100049, China
Corresponding author. E-mail: liubo@sinap.ac.cn
Scan for full text
Jin-Guo Wang, Bo Liu. Development of readout electronics for bunch arrival-time monitor system at SXFEL. [J]. Nuclear Science and Techniques 30(5):82(2019)
Jin-Guo Wang, Bo Liu. Development of readout electronics for bunch arrival-time monitor system at SXFEL. [J]. Nuclear Science and Techniques 30(5):82(2019) DOI: 10.1007/s41365-019-0594-2.
A bunch arrival-time monitor (BAM) system, based on electro-optical intensity modulation scheme, is under study at Shanghai soft X-ray Free Electron Laser (SXFEL). The aim of the study is to achieve high-precision time measurement for minimizing bunch fluctuations. A readout electronics is developed to fulfill the requirements of the BAM system. The readout electronics is mainly composed of a signal conditioning circuit, Field-Programmable Gate Array (FPGA), Mezzanine Card (FMC150), and powerful FPGA carrier board. The signal conditioning circuit converts the laser pulses into electrical pulse signals using a photodiode. Thereafter, it performs splitting and low noise amplification to achieve the best voltage sampling performance of the dual channel Analog-to-Digital Converter (ADC) in FMC150. The FMC150 ADC daughter card includes a 14-bit 250 Msps dual channel high-speed ADC, a clock configuration, and a management module. The powerful FPGA carrier board is a commercial high-performance Xilinx Kintex-7 FPGA evaluation board. To achieve clock and data alignment for ADC data capture at a high sampling rate, we used ISERDES, IDELAY, and dedicated carry-in resources in the Kintex-7 FPGA. This paper presents a detailed development of the readout electronics in the BAM system and its implementation performance.
Bunch Arrival-time Monitor (BAM)Shanghai soft X-ray Free Electron Laser (SXFEL)Field-Programmable Gate Array (FPGA)Signal conditioningHigh-speed Analog-to-Digital Converter (ADC)
M. W. Guetg, A. A. Lutman, Y. Ding et al., Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses. Phys. Rev. Lett. 120, 014801 (2018). doi: 10.1103/PhysRevLett.120.014801http://doi.org/10.1103/PhysRevLett.120.014801
M. Dunne, X-ray free-electron lasers light up materials science. Nature Reviews Materials. 3, 290-292 (2018). doi: 10.1038/s41578-018-0048-1http://doi.org/10.1038/s41578-018-0048-1
Z. T. Zhao, C. Feng, K. Q. Zhang, Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). doi: 10.1007/s41365-017-0258-zhttp://doi.org/10.1007/s41365-017-0258-z
Z. T. Zhao, D. Wang, L. X. Yin et al., Shanghai soft X-ray free-electron laser facility. Chinese Journal of Lasers, 2019, 46(1): 0100004. doi: 10.3788/cjl201946.0100004http://doi.org/10.3788/cjl201946.0100004 (in Chinese)
Z. Wang, C. Feng, Q. Gu et al., Generation of double pulses at the Shanghai soft X-ray free electron laser facility. Nucl. Sci. Tech. 28, 28 (2017). doi: 10.1007/s41365-017-0188-9http://doi.org/10.1007/s41365-017-0188-9
M. H. Song, C. Feng, D. Zhang Huang et al., Wakefields studies for the SXFEL user facility. Nucl. Sci. Tech. 28, 90 (2017). doi: 10.1007/s41365-017-0242-7http://doi.org/10.1007/s41365-017-0242-7
M. Altarelli, R. Brinkmann, M. Chergui et al., XFEL: The European X-Ray Free-Electron Laser-Technical Design Report. DESY 2006-097. 097. 1-557. http://xfel.desy.de/localfsExplorer_read?currentPath=/afs/desy.de/group/xfel/wof/EPT/TDR/XFEL-TDR-final.pdfhttp://xfel.desy.de/localfsExplorer_read?currentPath=/afs/desy.de/group/xfel/wof/EPT/TDR/XFEL-TDR-final.pdf
N. Hartmann, G. Hartmann, R. Heider, Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photonics 12, 215 (2018). doi: 10.1038/s41566-018-0107-6http://doi.org/10.1038/s41566-018-0107-6
Linac Coherent Light Source II (LCLS-II) Conceptual Design Report, SLAC, Design Report, 2011. https://portal.slac.stanford.edu/sites/lcls_public/lcls_ii/Published_Documents/CDR%20Index.pdfhttps://portal.slac.stanford.edu/sites/lcls_public/lcls_ii/Published_Documents/CDR%20Index.pdf
R. Ganter, R. Abela, H. H. Braun et al., SwissFEL Conceptual Design Report, PSI, Design Report, 2010. http://www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_10-04.pdfhttp://www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_10-04.pdf
R. Abela, P. Beaud, J. A. Bokhoven et al., Perspective: Opportunities for ultrafast science at SwissFEL, Struct. Dyn. 4, 061602 (2018). doi: 10.1063/1.4997222http://doi.org/10.1063/1.4997222
Z. Q. Geng, Beam-based optimization of SwissFEL low-level RF system. Nucl. Sci. Tech. 29, 128 (2018). doi: 10.1007/s41365-018-0460-7http://doi.org/10.1007/s41365-018-0460-7
C. J. Bocchetta, A. Abrami, E. Allaria et al., FERMI@Elettra Conceptual Design Report, Elettra, Design Report, 2007. https://www.elettra.trieste.it/files/Documents/FERMI%20Machine/Machine/CDR/FERMI_CDR_Ch01.pdfhttps://www.elettra.trieste.it/files/Documents/FERMI%20Machine/Machine/CDR/FERMI_CDR_Ch01.pdf
S. B. Habib, D. Sikora, J. Szewinski et al., Development of uTCA Hardware for BAM system at FLASH and XFEL. In proceedings of MIXDES, Warsaw, Poland, 24-26 May 2012. http://accnet.web.cern.ch/accnet/Literature/2012/RFTECH_Paper_Samer_Habib.pdfhttp://accnet.web.cern.ch/accnet/Literature/2012/RFTECH_Paper_Samer_Habib.pdf
F. Löhl, V. Arsov, M. Felber et al., Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser. Phys. Rev. Lett. (2010). doi: 10.1103/PHYSREVLETT.104.144801http://doi.org/10.1103/PHYSREVLETT.104.144801
V. Arsov, M. Dehler, S. Hunziker et al., MOAL4: First results from the bunch arrival-time monitor at the SwissFEL test injector. In proceedings of IBIC, Oxford, UK, 16-19 September 2013. http://accelconf.web.cern.ch/AccelConf/ibic2013/papers/moal4.pdfhttp://accelconf.web.cern.ch/AccelConf/ibic2013/papers/moal4.pdf
L. Pavlovic, A. O. Borga, M. Ferianis et al., TUPSM086: Bunch arrival monitor at fermi@ elettra. In proceedings of BIW, Santa Fe, US, 2-6 May 2010. http://accelconf.web.cern.ch/AccelConf/BIW2010/papers/tupsm086.pdfhttp://accelconf.web.cern.ch/AccelConf/BIW2010/papers/tupsm086.pdf
J. G. Wang, B. Liu. THPML065: Preliminary results of the bunch arrival-time monitor at SXFEL. In proceedings of IPAC, Vancouver, Canada, April 29 to May 4, 2018. doi: 10.18429/JACoW-IPAC2018-THPML065http://doi.org/10.18429/JACoW-IPAC2018-THPML065
H. Schlarb. TOAD001: Techniques for Pump-Probe Synchronisation of Fsec Radiation Pulses. Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, USA, 16-20 MAY 2005. https://accelconf.web.cern.ch/accelconf/p05/PAPERS/TOAD001.PDFhttps://accelconf.web.cern.ch/accelconf/p05/PAPERS/TOAD001.PDF
P. Craievich, S. D. Mitri, M. Milloch et al., Modeling and experimental study to identify arrival-time jitter sources in the presence of a magnetic chicane. Phys. Rev. ST Accel. Beams 16, 090401 (2013). doi: 10.1103/PhysRevSTAB.16.090401http://doi.org/10.1103/PhysRevSTAB.16.090401
J. G. Wang, X. Q. Liu, L. Feng et al., Analysis of electro-optical intensity modulator for bunch arrival-time monitor at SXFEL. Nucl. Sci. Tech. 30, 3 (2019). doi: 10.1007/s41365-018-0524-8http://doi.org/10.1007/s41365-018-0524-8
FMC150 datasheet. http://www.4dsp.com/pdf/FMC150_data_sheet.pdfhttp://www.4dsp.com/pdf/FMC150_data_sheet.pdf
M. K. Bock. Measuring the Electron Bunch Timing with fs Resolution at FLASH. Ph.D. thesis, University Hamburg, Hamburg, Germany, (2013)
Xilinx, KC705 Evaluation Board for the Kintex-7 FPGA (2018). https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdfhttps://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf.
M. Defossez, Serial LVDS High-Speed ADC Interface (2012), https://www.xilinx.com/support/documentation/application_notes/xapp524-serial-lvds-adc-interface.pdfhttps://www.xilinx.com/support/documentation/application_notes/xapp524-serial-lvds-adc-interface.pdf
Xilinx, 7 Series FPGAs SelectIO Resources User Guide (2018) https://www.Xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdfhttps://www.Xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
Xilinx, LogiCORE IP Utility IDELAYCTRL Logic (2016), https://www.xilinx.com/support/documentation/ip_documentation/util_idelay_ctrl/v1_0/pb044-util-idelay-ctrl.pdfhttps://www.xilinx.com/support/documentation/ip_documentation/util_idelay_ctrl/v1_0/pb044-util-idelay-ctrl.pdf
Xilinx, Tri-Mode Ethernet MAC v9.0 LogiCORE IP Product Guide (2018), https://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v9_0/pg051-tri-mode-eth-mac.pdfhttps://www.xilinx.com/support/documentation/ip_documentation/tri_mode_ethernet_mac/v9_0/pg051-tri-mode-eth-mac.pdf
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution