1.Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author. E-mail address: weil@ihep.ac.cn
Scan for full text
Jia-Le Cai, Dao-Wu Li, Pei-Lin Wang, et al. Fast pulse sampling module for real-time neutron-gamma discrimination. [J]. Nuclear Science and Techniques 30(5):84(2019)
Jia-Le Cai, Dao-Wu Li, Pei-Lin Wang, et al. Fast pulse sampling module for real-time neutron-gamma discrimination. [J]. Nuclear Science and Techniques 30(5):84(2019) DOI: 10.1007/s41365-019-0595-1.
An adaptable and compact fast pulse sampling module was developed for the neutron-gamma discrimination. The developed module is well suited for low cost and low power consumption applications. It is based on the Domino Ring Sampler 4 (DRS4) chip, which offers fast sampling speeds up to 5.12 giga samples per second (GSPS) to digitize pulses from front end detectors. The high resolution GSPS data is useful for obtaining precise real-time neutron-gamma discrimination results directly in this module. In this study, we have implemented real-time data analysis in a field programmable gate array. Real-time data analysis involves two aspects: digital waveform integral and digital pulse shape discrimination (PSD). It can significantly reduce the system dead time and data rate processed offline. Plastic scintillators (EJ-299-33), which have proven capable of PSD, were adopted as neutron detectors in the experiments. A photomultiplier tube (PMT) (model #XP2020) was coupled to one end of a detector to collect the output light from it. The pulses output from the anode of the PMT were directly passed onto the fast sampling module. The fast pulse sampling module was operated at 1 GSPS and 2 GSPS in these experiments, and the AmBe-241 source was used to examine the neutron-gamma discrimination quality. The PSD results with different sampling rates and energy thresholds were evaluated. The figure of merit (FOM) was used to describe the neutron-gamma discrimination quality. The best FOM value of 0.91 was obtained at 2 GSPS and 1 GSPS sampling rates with an energy threshold of 1.5 MeV,ee, (electron equivalent).
Real timeNeutron-gamma discriminationDomino Ring Sampler 4Plastic scintillators
G.F. Knoll, Radiation Detection and Measurement, 4th ed., 2010.
X. Xie, X. Zhang, X. Yuan et al., Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis. Rev. Sci. Instrum 83, 626 (2012). doi: 10.1063/1.4754633http://doi.org/10.1063/1.4754633
H. Xing, X. Yu, J. Zhu et al., Simulation study of the neutron–gamma discrimination capability of a liquid scintillator neutron detector. Nucl. Instrum. Meth. A 768, 1-8 (2014). doi: 10.1016/j.nima.2014.08.049http://doi.org/10.1016/j.nima.2014.08.049
C. Liao, H. Yang, Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array. Nucl. Instrum. Meth. A 789, 150-157 (2015). doi: 10.1016/j.nima.2015.04.016http://doi.org/10.1016/j.nima.2015.04.016
D. Cester, G. Nebbia, L. Stevanato et al., Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33. Nucl. Instrum. Meth. A 735, 202-206 (2014). doi: 10.1016/j.nima.2013.09.031http://doi.org/10.1016/j.nima.2013.09.031
Richard S. Woolf, Anthony L. Hutcheson, Chul Gwon et al., Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator. Nucl. Instrum. Meth. A 784, 80-87 (2015). doi: 10.1016/j.nima.2014.10.067http://doi.org/10.1016/j.nima.2014.10.067
S. Nyibule, E. Henry, W.U. Schröder et al., Radioluminescent characteristics of the EJ 299-33 plastic scintillator. Nucl. Instrum. Meth. A 728, 36-39 (2013). doi: 10.1016/j.nima.2013.06.020http://doi.org/10.1016/j.nima.2013.06.020
S.A. Pozzi, M.M. Bourne, S.D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl. Instrum. Meth. A 723, 19-23 (2013). doi: 10.1016/j.nima.2013.04.085http://doi.org/10.1016/j.nima.2013.04.085
S.A. Pozzi, M.M. Bourne, J.L. Dolan et al., Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Nucl. Instrum. Meth. A 767, 188-192 (2014). doi: 10.1016/j.nima.2014.08.002http://doi.org/10.1016/j.nima.2014.08.002
DRS4 datasheet rev. 0.9. Available from: https://www.psi.ch/drs/DocumentationEN/DRS4_rev09.pdfhttps://www.psi.ch/drs/DocumentationEN/DRS4_rev09.pdf
DRS4 Evaluation Board Rev. 5.1 manual. Available from: https://www.psi.ch/drs/DocumentationEN/manual_rev51.pdfhttps://www.psi.ch/drs/DocumentationEN/manual_rev51.pdf.
H. Friederich, G. Davatz, U. Gendotti et al., Real-time data analysis using the WaveDREAM data acquisition system. 18th IEEE Real Time Conference. 1-7 (2012). doi: 10.1109/RTC.2012.6418216http://doi.org/10.1109/RTC.2012.6418216
H. Kim, C. T. Chen, N. Eclov et al., A new time calibration method for switched-capacitor array-based waveform samplers. Nucl. Instrum. Meth. A 767 67-74 (2014). doi: 10.1016/j.nima.2014.08.025http://doi.org/10.1016/j.nima.2014.08.025
M. Bitossi, R. Paoletti, D. Tescaro, Ultra-Fast Sampling and Data Acquisition Using the DRS4 Waveform Digitizer. IEEE T. Nucl. Sci. 63, 2309-2316 (2016). doi: 10.1109/TNS.2016.2578963http://doi.org/10.1109/TNS.2016.2578963
J. Wang, L. Zhao, C. Feng et al., Evaluation of a Fast Pulse Sampling Module With Switched-Capacitor Arrays. IEEE T. Nucl. Sci. 59, 2435-2443 (2012). doi: 10.1109/TNS.2012.2208656http://doi.org/10.1109/TNS.2012.2208656
J.K. Polack, M. Flaska, A. Enqvist et al., An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators. Nucl. Instrum. Meth. A 795, 253-267 (2015). doi: 10.1016/j.nima.2015.05.048http://doi.org/10.1016/j.nima.2015.05.048
M. Nakhostin, P.M. Walker, Application of digital zero-crossing technique for neutron–gamma discrimination in liquid organic scintillation detectors. Nucl. Instrum. Meth. A 621, 498-501 (2010). doi: 10.1016/j.nima.2010.06.252http://doi.org/10.1016/j.nima.2010.06.252
Sabbah, B.; Suhami, A., An accurate pulse-shape discriminator for a wide range of energies. Nucl. Instrum. Meth. 58(1), 102-110 (1968). doi: 10.1016/0029-554X(68)90035-9http://doi.org/10.1016/0029-554X(68)90035-9
R.A. Winyard J.E. Lutkin G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. Nucl. Instrum. Meth. 95, 141-153 (1971). doi: 10.1016/0029-554X(71)90054-1http://doi.org/10.1016/0029-554X(71)90054-1
User Manual UM3148 DT5730/DT5725. Available from: http://www.caen.it/servlet/checkCaenManualFile?Id=12386http://www.caen.it/servlet/checkCaenManualFile?Id=12386
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution