a.School of Engineering, Cardiff University, Wales, UK
b.Tomsk Polytechnic University, Tomsk, Russia
c.School of Engineering, Amirkabir University of Technology, Tehran, Iran
Corresponding author's Email address:NoorikalkhoranO@cardiff.ac.uk
Scan for full text
Omid Noorikalkhoran, Najmeh Jafari, Massimiliano Gei, et al. Simulation of hydrogen distribution and effect of engineering safety features (ESFs) on its mitigation in a WWER-1000 containment. [J]. Nuclear Science and Techniques 30(6):97(2019)
Omid Noorikalkhoran, Najmeh Jafari, Massimiliano Gei, et al. Simulation of hydrogen distribution and effect of engineering safety features (ESFs) on its mitigation in a WWER-1000 containment. [J]. Nuclear Science and Techniques 30(6):97(2019) DOI: 10.1007/s41365-019-0624-0.
In this study, thermal-hydraulic parameters inside the containment of a WWER-1000/v446 nuclear power plant are simulated in a Double Ended Cold Leg (DECL) accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.8.6 codes) and the effect of the spray system as an Engineering Safety Feature (ESF) on parameters mitigation are analyzed with the former code. Along with the development of the accident from Design Basis Accident (DBA) to Beyond Design Basis Accident (BDBA), the zircaloy-steam reaction becomes the source of in-vessel hydrogen generation. Hydrogen distribution inside the containment is simulated for a long time (using CONTAIN and MELCOR) and the effect of recombiners on its mitigation are analyzed (using MELCOR). Thermal-hydraulic parameters and hydrogen distribution profiles are presented as the outcome of the investigation. By activating the spray system, the peak points of pressure and temperature occur in the short time and remain below the maximum design values along the accident time. It is also shown that recombiners have a reliable effect on reducing the hydrogen concentration below flame-propagation limit in the accident localization area. The parameters predicted by CONTAIN and MELCOR are in good agreement with the Final Safety Analysis Report. The noted discrepancies are discussed and explained.
ContainmentHydrogen distributionIn-vessel severe accidentRecombinersCONTAINMELCOR
J.N. Sorensen, G.E. Apostolakis, T.S. Kress et al., On the Role of Defence in Depth in Risk-Informed Regulation. Washington D.C, 1999.
O. Noori-Kalkhoran, M. Rahgoshay, A. Minuchehr et al., Analysis of thermal-hydraulic parameters of WWER-1000 containment in a large break LOCA. Ann. Nucl. Energy. 68, 101-11(2014). doi: 10.1016/J.ANUCENE.2014.01.009http://doi.org/10.1016/J.ANUCENE.2014.01.009
IAEA, Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants.Vienna, 2011.
NRC, U.S. Nuclear Regulatory Commission Regulations: Title 10,Code of Federal Regulations.
O. Noori-Kalkhoran, A. Minuchehr, M. Rahgoshay et al., Short-term and long-term analysis of WWER-1000 containment parameters in a large break LOCA. Prog. Nucl. Energy. 74, 201-212 (2014). doi: 10.1016/J.PNUCENE.2014.03.007http://doi.org/10.1016/J.PNUCENE.2014.03.007
O. Noori-Kalkhoran, A.S. Shirani, R. Ahangari, Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code. Nucl. Eng. Technol. 48, 1140-1153 (2016). doi: 10.1016/J.NET.2016.03.008http://doi.org/10.1016/J.NET.2016.03.008
D. Papini, D. Grgić, A. Cammi et al., Analysis of different containment models for IRIS small break LOCA, using GOTHIC and RELAP5 codes. Nucl. Eng. Des. 241, 1152-1164 (2011). doi: 10.1016/j.nucengdes.2010.06.016http://doi.org/10.1016/j.nucengdes.2010.06.016
Y.S. Chen, Y.R. Yuann, L.C. Dai, Lungmen ABWR containment analyses during short-term main steam line break LOCA using GOTHIC. Nucl. Eng. Des. 247, 106-115 (2012). doi: 10.1016/j.nucengdes.2012.02.012http://doi.org/10.1016/j.nucengdes.2012.02.012
G. Jimenez, C. Serrano, E. Lopez-Alonso et al., BWR Mark III containment analyses using a GOTHIC 8.0 3D model. Ann. Nucl. Energy. 85, 687-703 (2015). doi: 10.1016/j.anucene.2015.06.025http://doi.org/10.1016/j.anucene.2015.06.025
Z. Huang, W. Ma, Performance evaluation of passive containment cooling system of an advanced PWR using coupled RELAP5/GOTHIC simulation. Nucl. Eng. Des. 310, 83-92 (2016). doi: 10.1016/j.nucengdes.2016.10.004http://doi.org/10.1016/j.nucengdes.2016.10.004
EPRI, GOTHIC “Thermal Hydraulic Analysis Package Installation and Operations Manual”, 2016.
M. Povilaitis, S. Kelm, E. Urbonavičius, The Generic Containment SB-LOCA accident simulation: Comparison of the parameter uncertainties and user-effect. Ann. Nucl. Energy. 106, 1-10 (2017). doi: 10.1016/j.anucene.2017.03.037http://doi.org/10.1016/j.anucene.2017.03.037
B. De Boeck, Prevention and mitigation measures to ensure containment integrity. Nucl. Eng. Des. 209, 147-154 (2001). doi: 10.1016/S0029-5493(01)00397-1http://doi.org/10.1016/S0029-5493(01)00397-1
S. Yu, M. Yan, J. Wang et al., Numerical investigations on the response of the passive containment cooling system and containment under a DELB LOCA scenario. Prog. Nucl. Energy. 97, 26-37 (2017). doi: 10.1016/j.pnucene.2016.12.011http://doi.org/10.1016/j.pnucene.2016.12.011
X.G. Huang, Y.H. Yang, X. Cheng et al., Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP. Ann. Nucl. Energy. 38, 1743-1750 (2011). doi: 10.1016/j.anucene.2011.04.003http://doi.org/10.1016/j.anucene.2011.04.003
B.G. Jeon, H.C. NO, Thermal-hydraulic evaluation of passive containment cooling system of improved APR+ during LOCAs. Nucl. Eng. Des. 278, 190-198 (2014). doi: 10.1016/j.nucengdes.2014.07.038http://doi.org/10.1016/j.nucengdes.2014.07.038
S. Şahin, MS. Sarwar, Hydrogen hazard and mitigation analysis in PWR containment. Ann. Nucl. Energy. 58, 132-140 (2013). doi: 10.1016/j.anucene.2013.03.001http://doi.org/10.1016/j.anucene.2013.03.001
S.R. Ravva, K.N. Iyer, A.J. Gaikwad, Development of sump model for containment hydrogen distribution calculations using CFD code. Nucl. Eng. Des. 295, 429-440 (2015). doi: 10.1016/j.nucengdes.2015.10.00http://doi.org/10.1016/j.nucengdes.2015.10.00
J.M. Martín-Valdepeñas, M.A. Jiménez, F. Martín-Fuertes et al., Improvements in a CFD code for analysis of hydrogen behaviour within containments. Nucl. Eng. Des. 237, 627-647 (2007). doi: 10.1016/j.nucengdes.2006.09.002http://doi.org/10.1016/j.nucengdes.2006.09.002
A.M. Gómez-Torres, E. Sáinz-Mejía, J.V. Xolocostli-Munguía et al., CFD analysis of hydrogen volumetric concentrations in a Hard Venting Containment System of a Mark II BWR. Ann. Nucl. Energy. 85, 552-565 (2015). doi: 10.1016/j.anucene.2015.06.008http://doi.org/10.1016/j.anucene.2015.06.008
G.P. Choi, D.Y. Kim, K.H. Yoo et al., Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks. Nucl. Eng. Des. 300, 393-402 (2016). doi: 10.1016/j.nucengdes.2016.02.015http://doi.org/10.1016/j.nucengdes.2016.02.015
T. Szabó, F. Kretzschmar, T. Schulenberg., Obtaining a more realistic hydrogen distribution in the containment by coupling MELCOR with GASFLOW. Nucl. Eng. Des. 269, 330-339 (2014). doi: 10.1016/J.NUCENGDES.2013.07.009http://doi.org/10.1016/J.NUCENGDES.2013.07.009
W. Breitung, P. Royl, Procedure and tools for deterministic analysis and control of hydrogen behavior in severe accidents. Nucl. Eng. Des. 202, 249-268 (2000). doi: 10.1016/S0029-5493(00)00380-0http://doi.org/10.1016/S0029-5493(00)00380-0
E. Bachellerie, F. Arnould, M. Auglaire et al., Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des. 221, 151-165 (2003). doi: 10.1016/S0029-5493(02)00330-8http://doi.org/10.1016/S0029-5493(02)00330-8
AEOI (Atomic Energy Organization of Iran), BNPP Final Safety analysis Report (FSAR). Iran, 2007.
I.L. Drell, F.E. Belles, Survey of Hydrogen Combustion Properties. United States: NASA Technical report, 1958.
H. Karwat, J. Bardelay, T. Hashimoto, SOAR on Containment Thermalhydraulics and Hydrogen Distribution. OECD/NEA/CSNI, 1999.
K.K. Murata, D.C. William, J. Tills et al., Code manual for CONTAIN 2.0; A computer code for Nuclear Reactor Containment Analysis. Albuquerqu, NM: Sandia National Lab, 1997.
R.O. Gauntt, R.K. Cole, C.M. Erickson et al., MELCOR Computer Code Manuals. NUREG/CR-6119, Rev. 2, 2000.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution