1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
4.Idaho National Laboratory, Idaho Falls, ID 83415, USA
5.Institute for Structure and Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA
Corresponding author, fangx26@mail.sysu.edu.cn
Scan for full text
Xiao-Dong Tang, Shao-Bo Ma, Xiao Fang, et al. An efficient method for mapping the 12C+12C molecular resonances at low energies. [J]. Nuclear Science and Techniques 30(8):126(2019)
Xiao-Dong Tang, Shao-Bo Ma, Xiao Fang, et al. An efficient method for mapping the 12C+12C molecular resonances at low energies. [J]. Nuclear Science and Techniques 30(8):126(2019) DOI: 10.1007/s41365-019-0652-9.
The ,12,C+,12,C fusion reaction is famous because of its complication of molecular resonances, and it plays an important role in both nuclear structural research and astrophysics. It is extremely difficult to measure the cross-sections of ,12,C+,12,C fusions at energies of astrophysical relevance because of the very low reaction yields. To measure the complicated resonant structure that exists in this important reaction, an efficient thick target method has been developed and applied for the first time at energies ,E,c.m., lt;5.3 MeV. A scan of the cross-sections over a relatively wide range of energies can be carried out using only a single beam energy. The result of measurement at ,E,c.m.,= 4.1 MeV is compared with results from previous work. This method will be useful for searching for potentially existing resonances of ,12,C+,12,C in the energy range 1 MeV lt; ,E,c.m., lt;3 MeV.
12C+12CMolecular resonanceThick target method12C(12Cp)23Na
D. A. Bromley, J. A. Kuehner, E. Almqvist, Resonant elastic scattering of C12 by carbon. Phys. Rev. Lett. 4, 365 (1960). doi: 10.1103/PhysRevLett.4.365http://doi.org/10.1103/PhysRevLett.4.365
E. Almqvist, D. A. Bromley, J. A. Kuehner, Resonances in C12 on carbon reactions. Phys. Rev. Lett. 4, 515 (1960). doi: 10.1103/PhysRevLett.4.515http://doi.org/10.1103/PhysRevLett.4.515
Nuclear Science Advisory Committee, The 2015 long range plan for nuclear science, 2015
E. R. Cosman, T. M. Cormier, K. Van Bibber, et al., Evidence for a 12C+12C collective band in 24Mg. Phys. Rev. Lett. 35, 265 (1975). doi: 10.1103/PhysRevLett.35.265http://doi.org/10.1103/PhysRevLett.35.265
N. Cindro, F. Coçu, J. Uzureau,et al., Evidence for a rotational band in 24Mg and its fragmentation: A rotation-vibration coupling? Phys. Rev. Lett. 39, 1135 (1977). doi: 10.1103/PhysRevLett.39.1135http://doi.org/10.1103/PhysRevLett.39.1135
H. Chandra, U. Mosel, Molecular configurations in heavy-ion collisions. Nucl. Phys. A 298, 151-168 (1978). doi: 10.1016/0375-9474(78)90013-1http://doi.org/10.1016/0375-9474(78)90013-1
J. A. Patterson, H. Winkler, C. S. Zaidins, Experimental investigation of the stellar nuclear reaction 12C + 12C at low energies. Astrophys. J. 157, 367 (1969). doi: 10.1086/150073http://doi.org/10.1086/150073
M. G. Mazarakis, W. E. Stephens, Experimental measurements of the 12C+12C nuclear reactions at low energies. Phys. Rev. C 7, 1280 (1973). doi: 10.1103/PhysRevC.7.1280http://doi.org/10.1103/PhysRevC.7.1280
M. D. High, B. Čujec, The 12C+12C sub-coulomb fusion cross section. Nucl. Phys. A 282, 181-188 (1977). doi: 10.1016/0375-9474(77)90179-8http://doi.org/10.1016/0375-9474(77)90179-8
K. U. Kettner, H. Lorenz-Wirzba, C. Rolfs, et al., Study of the fusion reaction 12C+12C below the coulomb barrier. Phys. Rev. Lett. 38, 337 (1977). doi: 10.1103/PhysRevLett.38.337http://doi.org/10.1103/PhysRevLett.38.337
H. W. Becker, K. U. Kettner, C. Rolfs, et al., The 12C+12C reaction at subcoulomb energies (II). Z. Physik A, 303, 305-312 (1981). doi: 10.1007/BF01421528http://doi.org/10.1007/BF01421528
L. R. Gasques, L. C. Chamon, D. Pereira, et al., Global and consistent analysis of the heavy-ion elastic scattering and fusion processes. Phys. Rev. C 69, 034603 (2004). doi: 10.1103/PhysRevC.69.034603http://doi.org/10.1103/PhysRevC.69.034603
E. F. Aguilera, P. Rosales, E. Martinez-Quiroz, et al., New γ-ray measurements for 12C+12C sub-Coulomb fusion: Toward data unification. Phys. Rev. C 73, 064601 (2006). doi: 10.1103/PhysRevC.73.064601http://doi.org/10.1103/PhysRevC.73.064601
T. Spillane, F. Raiola, C. Rolfs, et al., 12C+12C fusion reactions near the gamow energy. Phys. Rev. Lett. 98, 122501 (2007). doi: 10.1103/PhysRevLett.98.122501http://doi.org/10.1103/PhysRevLett.98.122501
X. Fang, B. Bucher, A. Howard, et al., Nucl. Instrum. Methods Phys. Res. A, 871, 35-41 (2017). doi: 10.1016/j.nima.2017.07.050http://doi.org/10.1016/j.nima.2017.07.050
J. Zickefoose, A. Di Leva, F. Strieder, et al., Measurement of the 12C(12C,p)23Na cross section near the Gamow energy. Phys. Rev. C 97, 065806 (2018). doi: 10.1103/PhysRevC.97.065806http://doi.org/10.1103/PhysRevC.97.065806
H. Pais, F. Gulminelli, C. Providência, et al., Light and heavy clusters in warm stellar matter. Nucl. Sci. Tech. 29, 181 (2018). doi: 10.1007/s41365-018-0518-6http://doi.org/10.1007/s41365-018-0518-6
C. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)
William A. Fowler, Experimental and theoretical nuclear astrophysics: the quest for the origin of the elements. Rev. Mod. Phys. 56, 149 (1984). doi: 10.1103/RevModPhys.56.149http://doi.org/10.1103/RevModPhys.56.149
J. F. Ziegler, Website, www.srim.orgwww.srim.org (accessed March 2019)
M. Heine, et al., The STELLA apparatus for particle-Gamma coincidence fusion measurements with nanasecond timing. Nucl. Instrum. Methods Phys. Res. A, 903, 1-7 (2018). doi: 10.1016/j.nima.2018.06.058http://doi.org/10.1016/j.nima.2018.06.058
C. Soldano, A. Mahmood, and E. Dujardin, Production, properties and potential of graphene. Carbon 48, 2127 (2010). doi: 10.1016/j.carbon.2010.01.058http://doi.org/10.1016/j.carbon.2010.01.058
B. Bucher, X. Tang, X. Fang, et al., First Direct Measurement of 12C(12C,n)23Mg at Stellar Energies. Phys. Rev. Lett. 114, 251102 (2015). doi: 10.1103/PhysRevLett.114.251102http://doi.org/10.1103/PhysRevLett.114.251102
X. Fang, W. P. Tan, M. Beard, R. J. deBoer, et al., Experimental measurement of 12C+16O fusion at stellar energies. Phys. Rev. C 96, 045804 (2017). doi: 10.1103/PhysRevC.96.045804http://doi.org/10.1103/PhysRevC.96.045804
W. P. Liu, et al. (JUNA Collaboration), Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Sci. China-Phys. Mech. Astron. 59, 642001 (2016). doi: 10.1007/s11433-016-5785-9http://doi.org/10.1007/s11433-016-5785-9
J. P. Cheng, et al., The China Jinping Underground Laboratory and Its Early Science. Annu. Rev. Nucl. Part. Sci. 67 231-251 (2017). doi: 10.1146/annurev-nucl-102115-044842http://doi.org/10.1146/annurev-nucl-102115-044842
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution