1.College of Physics, Sichuan University, Chengdu 610064, China
2.School of Physics, Nankai University, Tianjin 30071, China
3.Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
4.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Corresponding author: xhy@scu.edu.cn
Corresponding author: xhy@scu.edu.cn
Scan for full text
Yu-Lu Yan, Wei-Xin Zhong, Shin-Ted Lin, et al. Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. [J]. Nuclear Science and Techniques 31(6):55(2020)
Yu-Lu Yan, Wei-Xin Zhong, Shin-Ted Lin, et al. Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. [J]. Nuclear Science and Techniques 31(6):55(2020) DOI: 10.1007/s41365-020-00762-1.
Rare event search experiments are one of the most important topics in the field of fundamental physics, and high purity germanium (HPGe) detectors with an ultra-low radioactive background are frequently used for such experiments. However, cosmogenic activation contaminates germanium crystals during transport and storage. In this study, we investigated the movable shielding containers of HPGe crystals using Geant4 and CRY Monte Carlo simulations. The production rates of ,68,Ge,65,Zn,60,Co,55,Fe, and ,3,H were obtained individually for different types of cosmic rays. The validity of the simulation was confirmed through a comparison with the available experimental data. Based on this simulation, we found that the interactions induced by neutrons contribute to approximately 90% of the production rate of cosmogenic activation. In addition, by adding an optimized shielding structure, the production rates of cosmogenic radionuclides are reduced by about one order of magnitude. Our results show that it is feasible to use a shielding container to reduce the cosmogenic radioactivity produced during the transport and storage of high-purity germanium on the ground.
High-purity germaniumShielding structureGeant4Transportation
S.M. Bilenky, Neutrinoless double beta-decay. Physics of Particles & Nuclei. 41, 690-715 (2010). https://doi.org/10.1134/S1063779610050035https://doi.org/10.1134/S1063779610050035
K. Zuber, Neutrinoless double beta decay experiments. Acta Physica Polonica. 37, 1905-1921 (2006). https://doi.org/10.1088/1748-0221/1/07/P07002https://doi.org/10.1088/1748-0221/1/07/P07002
D.O. Stefano, M. Simone, V. Matteo, et al, Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2162659 (2016). https://doi.org/10.1155/2016/2162659https://doi.org/10.1155/2016/2162659
Bertone Gianfranco, The moment of truth for WIMP dark matter. Nature. 468, 389-393 (2010). https://doi.org/10.1038/nature09509https://doi.org/10.1038/nature09509
J.D. Lewin, P.F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87-112 (1996). https://doi.org/10.1016/S0927-6505(96)00047-3https://doi.org/10.1016/S0927-6505(96)00047-3
J. Schechter, J. Valle, Neutrinoless double- decay in SU(2)×U(1) theories. Phys. Rev. D. 25, 2951-2954 (1982). https://doi.org/10.1103/PhysRevD.25.2951https://doi.org/10.1103/PhysRevD.25.2951
D.M. Mei, Z.B. Yin, S.R. Elliott, Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 31, 417-420 (2009). https://doi.org/10.1016/j.astropartphys.2009.04.004https://doi.org/10.1016/j.astropartphys.2009.04.004
K. Kang, J. Cheng, J. Li, et al., Introduction to the CDEX experiment. Front. Phys.-Beijing. 8, 412-437 (2013). https://doi.org/10.1007/s11467-013-0349-1https://doi.org/10.1007/s11467-013-0349-1
L. Hehn, E. Armengaud, Q. Arnaud, et al., Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. Eur. Phys. J. C. 76, 548 (2016). https://doi.org/10.1140/epjc/s10052-016-4388-yhttps://doi.org/10.1140/epjc/s10052-016-4388-y
R. Agnese, A.J. Anderson, T. Aralis, et al., Low-mass dark matter search with CDMSlite. PHYS REV D. 97, 022002 (2018). https://doi.org/10.1103/PhysRevD.97.022002https://doi.org/10.1103/PhysRevD.97.022002
L. Wang, Q. Yue, K. Kang, et al., First results on Ge-76 neutrinoless double beta decay from CDEX-1 experiment. Sci. China Phys. Mech. 60, 071011 (2017). https://doi.org/10.1007/s11433-017-9038-4https://doi.org/10.1007/s11433-017-9038-4
R.W. Schnee, D.S. Akerib, M.J. Attisha, et al., The SuperCDMS experiment. In: Klapdor-Kleingrothaus H.V., Arnowitt R. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. 259-268 (2006). https://doi.org/10.1007/3-540-26373-X_20https://doi.org/10.1007/3-540-26373-X_20
L. Pandola, C. Tomei. GERDA, a GERmanium Detector Array for the search for neutrinoless betabeta decay in 76Ge. AIP Conference Proceedings, 842, 843 (2006) https://doi.org/10.1063/1.2220398https://doi.org/10.1063/1.2220398
N. Abgrall, E. Aguayo, F.T.I. Avignone, et al., The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment. Adv. High Energy Phys.2014). https://doi.org/10.1155/2014/365432https://doi.org/10.1155/2014/365432
H. Jiang, L.P. Jia, Q. Yue, et al., Limits on light weakly interacting massive particles from the first 102.8 kg × day data of the CDEX-10 experiment. Phys. Rev. Lett. 120, 241301 (2018). https://doi.org/10.1103/PhysRevLett.120.241301https://doi.org/10.1103/PhysRevLett.120.241301
E. Aguayo Navarrete, R.T. Kouzes, A.S. Ankney, et al., Cosmic ray interactions in shielding materials. In: Pacific Northwest National Laboratory Report2011). https://doi.org/10.2172/1025678https://doi.org/10.2172/1025678
I. Barabanov, S. Belogurov, L. Bezrukov, et al., Cosmogenic activation of germanium and its reduction for low background experiments. Nucl. Instrum. Meth. B. 251, 115-120 (2006). https://doi.org/10.1016/j.nimb.2006.05.011https://doi.org/10.1016/j.nimb.2006.05.011
G. Cocconi, V.C. Tongiorgi, Intensity and Lateral Distribution of the N-Component in the Extensive Showers of the Cosmic Radiation. Physical Review. 79, 730-732 (1950). https://doi.org/10.1103/PhysRev.79.730https://doi.org/10.1103/PhysRev.79.730
J.F. Ziegler, G.R. Srinivasan, Terrestrial cosmic rays and soft errors. IBM J. Res. Dev. 40, 19-39 (1996). https://doi.org/10.1147/rd.401.0019https://doi.org/10.1147/rd.401.0019
J. Tinlot, B. Gregory, Absorption of Penetrating Shower Primaries. Physical Review. 75, 519-520 (1949). https://doi.org/10.1103/physrev.75.519https://doi.org/10.1103/physrev.75.519
N.Q. Hung, V.H. Hai, M. Nomachi, Investigation of cosmic-ray induced background of Germanium gamma spectrometer using GEANT4 simulation. Appl. Radiat. Isotopes. 121, 87-90 (2017). https://doi.org/10.1016/j.apradiso.2016.12.047https://doi.org/10.1016/j.apradiso.2016.12.047
P. Papini, C. Grimani, S.A. Stephens, An estimate of the secondary-proton spectrum at small atmospheric depths. IL Nuovo Cimento C. 19, 367-387 (1996). https://doi.org/10.1007/BF02509295https://doi.org/10.1007/BF02509295
J. Ma, Q. Yue, S. Lin, et al., Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment. Sci. China Phys. Mech. 62, 11011 (2019). https://doi.org/10.1007/s11433-018-9215-0https://doi.org/10.1007/s11433-018-9215-0
W.Z. Wei, D.M. Mei, C. Zhang, Cosmogenic activation of germanium used for tonne-scale rare event search experiments. Astropart. Phys. 96, 24-31 (2017). https://doi.org/10.1016/j.astropartphys.2017.10.007https://doi.org/10.1016/j.astropartphys.2017.10.007
S. Cebrián, J. Amaré, B. Beltrán, et al., Cosmogenic activation in germanium double beta decay experiments. Journal of Physics Conference. 39, 344-346 (2006). https://doi.org/10.1088/1742-6596/39/1/089https://doi.org/10.1088/1742-6596/39/1/089
J.J. Back, Y.A. Ramachers, ACTIVIA: Calculation of isotope production cross-sections and yields. Nucl. Instrum. Meth. A. 586, 286-294 (2008). https://doi.org/10.1016/j.nima.2007.12.008https://doi.org/10.1016/j.nima.2007.12.008
D.M. Mei, Z.B. Yin, S.R. Elliott, Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 31, 417-420 (2009). https://doi.org/10.1016/j.astropartphys.2009.04.004https://doi.org/10.1016/j.astropartphys.2009.04.004
E. Armengaud, Q. Arnaud, C. Augier, et al., Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. 12,2017). https://doi.org/10.1088/1748-0221/12/08/P08010https://doi.org/10.1088/1748-0221/12/08/P08010
H.V. Klapdor-Kleingrothaus, L. Baudis, A. Dietz, et al., GENIUS-TF: a test facility for the GENIUS project. Nucl. Instrum. Meth. A. 481, 149-159 (2002). https://doi.org/10.1016/s0168-9002(01)01258-xhttps://doi.org/10.1016/s0168-9002(01)01258-x
F.T. Avignone, R.L. Brodzinski, J.I. Collar, et al., Theoretical and experimental investigation of cosmogenic radioisotope production in germanium. Nucl. Phys. B. 28, 280-285 (1992). https://doi.org/10.1016/0920-5632(92)90184-Thttps://doi.org/10.1016/0920-5632(92)90184-T
W.N. Hess, H.W. Patterson, R. Wallace, et al., Cosmic-ray neutron energy spectrum. Phys Rev. 116, 445-457 (1959). https://doi.org/10.1103/PhysRev.116.445https://doi.org/10.1103/PhysRev.116.445
E. Armengaud, Q. Arnaud, C. Augier, et al., Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III. Dark Matter in Astro- and Particle Physics. 91, 51-64 (2017). https://doi.org/10.1016/j.astropartphys.2017.03.006https://doi.org/10.1016/j.astropartphys.2017.03.006
R. Agnese, T. Aralis, T. Aramaki, et al., Production rate measurement of Tritium and other cosmogenic isotopes in Germanium with CDMSlite. Astropart. Phys. 104, 1-12 (2019). https://doi.org/10.1016/j.astropartphys.2018.08.006https://doi.org/10.1016/j.astropartphys.2018.08.006
E. Armengaud, Q. Arnaud, C. Augier, et al., Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. 12, P08010 (2017). https://doi.org/10.1088/1748-0221/12/08/P08010https://doi.org/10.1088/1748-0221/12/08/P08010
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution