a.Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
b.Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Corresponding author: tangxiaobin@nuaa.edu.cn
Scan for full text
Sheng Lai, Xiao-Bin Tang, Jun-Xu Mu, et al. Attenuation characteristics of electromagnetic waves in plasma generated by coating radionuclide on surface structures. [J]. Nuclear Science and Techniques 31(8):78(2020)
Sheng Lai, Xiao-Bin Tang, Jun-Xu Mu, et al. Attenuation characteristics of electromagnetic waves in plasma generated by coating radionuclide on surface structures. [J]. Nuclear Science and Techniques 31(8):78(2020) DOI: 10.1007/s41365-020-00783-w.
Stealth technology plays an important role in modern military conflicts, especially when used in fighter jets. Since airfoil structures have a leading edge, inlet, and surface bulge that are easily detected by radar, it is necessary to study the stealth of these structures. In this study, we investigate structures coated with radionuclides to generate plasma. Using simulation and calculation methods, the attenuation of 0.1–10 GHz electromagnetic waves propagating in plasma was studied. The results show that the attenuation of low-frequency electromagnetic waves is greater than that of high-frequency electromagnetic waves. The attenuation of 0.1–1 GHz electromagnetic waves is found to be less than –2.7 dB, –3.0 dB, and –15.6 dB at the airfoil leading edge, inlet, and surface bulge structures, respectively. We also found that the attenuation of electromagnetic waves with 0°-incidence is greater than that of waves with 10°, 20°, and 30° incidence angles. Additionally, the attenuation of electromagnetic waves decreases gradually as the incident angle increases.
Plasma stealthRadionuclide coatingElectromagnetic wavesNumerical simulation
X. Wang, J. Z. Zhu, W. Liu, Radar scattering width effects by coating 90Sr/90Y layers on cylindrical targets. Nucl. Sci. Tech. 28, 22-29 (2017). https://doi.org/10.1007/s41365-017-0196-9https://doi.org/10.1007/s41365-017-0196-9
R. J. Vidmar, On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 18, 733-741 (1990). https://doi.org/10.1109/27.57528https://doi.org/10.1109/27.57528
H. F. Zhang, S. B. Liu, The properties of unusual surface plasmon modes and switching gaps in the three-dimensional photonic crystals composed of plasma-coated spheres. J. Electromagn. Waves Appl. 28, 1347-1359 (2014). https://doi.org/10.1080/09205071.2014.921124https://doi.org/10.1080/09205071.2014.921124
H. Li, X. B. Tang, S. Hang, Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth’s atmosphere. J. Appl. Phys. 121, 123101 (2017). https://doi.org/10.1063/1.4978758https://doi.org/10.1063/1.4978758
S. Hang, Y. P. Liu, H. Li, Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 887, 18-26 (2018). https://doi.org/10.1016/j.nima.2018.01.031https://doi.org/10.1016/j.nima.2018.01.031
G. Xia, L. Yang, The study on infrared stealthy of variable emissivity materials based on the radiation contrast. Applied Mechanics and Materials. 419, 341-347 (2013). https://doi.org/10.4028/www.scientific.net/AMM.419.341https://doi.org/10.4028/www.scientific.net/AMM.419.341
X. J. Zhang, S. L. Wang, H. M. Jia et al., A high sensitivity screening method for γ peaks based on the critical level. Nuclear Techniques. 42, 0-070202-4 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.070202https://doi.org/10.11889/j.0253-3219.2019.hjs.42.070202
K. Z. Yue, S. C. Chen, W. L. Liu, Simulation of conceptual designs of a three-surface stealth strike fighter. Int’l J. of Aeronautical & Space Sci. 15, 366-373 (2014). https://doi.org/10.5139/IJASS.2014.15.4.366https://doi.org/10.5139/IJASS.2014.15.4.366
B. Bai, Y. Liu, L. Song, Passive Radar Jamming: A Novel Method Using Time-Varying Plasma. IEEE Access. 7, 120082-120088 (2019). https://doi.org/10.1109/ACCESS.2019.2935514https://doi.org/10.1109/ACCESS.2019.2935514
M. Rahmanzadeh, H. Rajabalipanah, A. Abdolali, Analytical investigation of ultrabroadband plasma-graphene radar absorbing structures. IEEE Trans. Plasma Sci. 45, 945-954 (2017). https://doi.org/10.1109/TPS.2017.2700724https://doi.org/10.1109/TPS.2017.2700724
K. Ozkan, S. G. Cigdem, Response of magnetized plasma having linearly varying electron density profile to oblique electromagnetic wave incidence. J. Electromagn. Waves Appl. 32, 2046-2054 (2018). https://doi.org/10.1080/09205071.2018.1489311https://doi.org/10.1080/09205071.2018.1489311
W. J. Song, H. Zhang, Analysis of electromagnetic wave propagation and scattering characteristics of plasma shealth via high order ADE-ADI FDTD. J. Electromagn. Waves Appl. 30, 1321-1333 (2016). https://doi.org/10.1080/09205071.2016.1198727https://doi.org/10.1080/09205071.2016.1198727
G. Torrisi, D. Mascali, G. Sorbells, Full-wave FEM simulations of electromagnetic waves in strongly magnetized non-homogeneous plasma. J. Electromagn. Waves Appl. 28, 1085-1099 (2014). https://doi.org/10.1080/09205071.2014.905245https://doi.org/10.1080/09205071.2014.905245
Q. C. Zhang, Z. Y. Tian, Study of attenuation characteristics of electromagnetic waves in multilayer plasma slabs. J. Appl. Phys. 125, 094902 (2019). https://doi.org/10.1063/1.5037417https://doi.org/10.1063/1.5037417
D. Cheng, H. C. Yin, H. X. Zheng, Research on minimum energy excited to plasma coating for reducing radar cross section of target. Progress In Electromagnetics Research Letters. 83, 15-22 (2019). https://doi.org/10.2528/pierl16012503https://doi.org/10.2528/pierl16012503.
H. Li, X. B. Tang, S Hang, High-directional laser-plasma-induced X-ray source assisted by collimated electron beams in targets with a self-generated magnetic field. Fusion Eng. Des. 144, 193-201 (2019). https://doi.org/10.1016/j.fusengdes.2019.05.001https://doi.org/10.1016/j.fusengdes.2019.05.001
C. Zhu, J. Zhang, A. M. Chen, The adsorption transfer mechanism of U and 238Pu in sandy aquifers. Nuclear Techniques. 42, 90301-090301 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090301https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090301
X. Y. Deng, Y. D. Su, X. G. Tuo, Adsorption characteristics of 239Pu in Dachaidan clay rocks in Qinghai. Nuclear Techniques. 42, 80304-080304 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.080304https://doi.org/10.11889/j.0253-3219.2019.hjs.42.080304 (in Chinese)
P. J. William, The ionization by Polonium Alpha Particles in Air and the Average Energy to Make an Ion Pair. RADIAT RES. 13, 1-17 (1960). https://doi.org/10.2307/3570868https://doi.org/10.2307/3570868
H. P. Flierl, M. Engelbrecht, The energy loss of alpha particles traversing a hydrogen plasma. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 415, 637-641 (1998). https://doi.org/10.1016/s0168-9002(98)00438-0https://doi.org/10.1016/s0168-9002(98)00438-0
H. August, U.S. Patent 3,713,157, 23 Jan 1973
Vidmar , U.S. Patent 5,594,446, 14 Jan 1997
National oceanic and atmospheric administration, U.S. standard atmosphere. (U.S. Government Printing Office, 1976)
A. Munoz, J. M. Perez, An approach to Monte Carlo simulation of low-energy electron and photon interactions in air. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 536, 176-188 (2005). https://doi.org/10.1016/j.nima.2004.07.171https://doi.org/10.1016/j.nima.2004.07.171
Hussain A, Mirza SM. Beta-efficiency of a typical gas-flow ionization chamber using Geant4 monte carlo simulation. Nucl. Technol. Radiat. Prot. 26, 193-200 (2011). https://doi.org/10.2298/NTRP1103193Hhttps://doi.org/10.2298/NTRP1103193H
W. Liu, J. Z. Zhu, Influence of plasma induced by radionuclide layer on the radar cross section of spherical objects. Nucl. Sci. Tech. 26, 040502 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.040502https://doi.org/10.13538/j.1001-8042/nst.26.040502
A. Bourdon, Y. Teresiak, P. Vervisch, Ionization and recombination rates of atomic oxygen in high-temperature air plasma flows. Phys. Rev. E. 57, 4684-4692 (1998). https://doi.org/10.1103/PhysRevE.57.4684https://doi.org/10.1103/PhysRevE.57.4684
S. A. Losev, V. A. Polyanskii, Nonequilibrium Ionization of Air Behind A Shock Wave Front at speeds of 5-10 km/sec. Fluid Dyn. 3, 176-183 (1968). https://doi.org/10.1007/bf01016258https://doi.org/10.1007/bf01016258
J. L. Young, R. O. Nelson, A Summary and Systematic Analysis of FDTD Algorithms for Linearly Dispersive Media. IEEE Antennas Propag. Mag. 43, 61-77 (2001). https://doi.org/10.1109/74.920019https://doi.org/10.1109/74.920019
R. J. Luebbers, F. Hunsberger, A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma. IEEE Trans. Antennas Propag. 39, 29-34 (1991). https://doi.org/10.1109/8.64431https://doi.org/10.1109/8.64431
S. B. Liu, J. J. Mo, N. C. Yuan, FDTD analysis of reflection of electromagnetic wave from a conductive plane covered with inhomogeneous time-varying plasma. Plasma Sci. Technol. 5, l669-1676 (2003). https://doi.org/10.1088/1009-0630/5/1/011https://doi.org/10.1088/1009-0630/5/1/011
Z. Wang, L Guo, W Chen, The Influence of Non-uniform Flow Field Characteristics of Hypersonic Vehicle on Electromagnetic Wave Propagation. Paper presented at 2018 International Applied Computational Electromagnetics Society Symposium (ACES), Beijing, China, 29 July - 1 August 2018
D. F. Kelley, R. J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Tram Antennas Propgat. 44, 792-797 (1996). https://doi.org/10.1109/8.509882https://doi.org/10.1109/8.509882
C. H. Lan, X. W. Hu, Z. H. Jiang, Interaction of Electromagnetic Waves with Two-Dimensional Metal Covered with Radar Absorbing Material and Plasma. Plasma Sci. Technol. 10, 717-723 (2008). https://doi.org/10.1088/1009-0630/10/6/12https://doi.org/10.1088/1009-0630/10/6/12
J. S. Jia, C. X. Yuan, S. Liu, Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma. Phys. Plasmas. 23, 043302 (2016). https://doi.org/10.1063/1.4946780https://doi.org/10.1063/1.4946780
Y. Xu, X. Qi, PIC-MCC simulation of electromagnetic wave attenuation in partially ionized plasmas. Plasma Sources Sci. Technol. 23, 015002 (2014). https://doi.org/10.1088/0963-0252/23/1/015002https://doi.org/10.1088/0963-0252/23/1/015002
C. X. Yuan, Z. X. Zhou, Reflection Properties of Electromagnetic Wave in a Bounded Plasma Slab. IEEE Trans. Plasma Sci. 38, 3348-3355 (2010). https://doi.org/10.1109/tps.2010.2084110https://doi.org/10.1109/tps.2010.2084110
N. Luo, J. S. Zhang, B. H. Liang et al., Radionuclides separation and analysis after ThO2 irradiation in reactor. Nuclear Techniques. 42, 80605-080605 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.080605https://doi.org/10.11889/j.0253-3219.2019.hjs.42.080605 (in Chinese)
L. W. Han, K. Li, G. Q. Zhong et al., Metal material activation research on EAST fusion facility. Nuclear Techniques. 42, 050604 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.050604https://doi.org/10.11889/j.0253-3219.2019.hjs.42.050604 (in Chinese)
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution