1.School of Physics, Zhengzhou University, Zhengzhou 451400, China
2.China Institute of Atomic Energy, P. O. Box 275(10), Beijing 102413, China
3.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Corresponding author, li_ yunju@163.com
Scan for full text
Chen Chen, Yun-Ju Li, Hao Zhang, et al. Preparation of large-area isotopic magnesium targets for the 25Mg(
Chen Chen, Yun-Ju Li, Hao Zhang, et al. Preparation of large-area isotopic magnesium targets for the 25Mg(
To study the ,25,Mg(,p,γ,),26,Al reaction at the Jinping Underground Nuclear Astrophysics laboratory, a large-area ,25,Mg target with a uniform thickness is needed. A rotating unit is used to ensure the uniformity of the target thickness during evaporation. After many attempts, 19 targets with diameters of 40 mm and a non-uniformity of 8.4% were prepared simultaneously. The rate of material utilization was approximately 4.7 times higher than that obtained using a conventional evaporation method.
Vacuum evaporationSubstrate rotationUniformityMaterial utilization
C.E. Rolfs, W.S. Rodney. Cauldrons in the Cosmos. Chicago(USA): The University of Chicago Press, 1988, 153-168.
J.P. Cheng, K.J. Kang, J.M. Li, et al. The China Jinping Underground Laboratory and Its Early Science. Annu Rev Nucl Part S, 2017, 67: 231-251. https://dx.doi.org/10.1146/annurev-nucl-102115-044842https://dx.doi.org/10.1146/annurev-nucl-102115-044842
W.H. Zeng, M. Hao, M. Zeng, et al. Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory. Nucl. Sci. Tech., 2020, 31: 50. https://dx.doi.org/10.1007/s41365-020-00760-3https://dx.doi.org/10.1007/s41365-020-00760-3
Z. Zeng, Y.H. Mi, M. Zeng, et al. Characterization of a broad-energy germanium detector for its use in CJPL. Nucl Sci Tech, 2017, 28: 7. https://dx.doi.org/10.1007/s41365-016-0162-yhttps://dx.doi.org/10.1007/s41365-016-0162-y
F. Strieder, B. Limata, A. Formicola, et al. The 25Mg(p, γ)26Al reaction at low astrophysical energies. Phys Lett B, 2012, 707: 60-65. https://dx.doi.org/10.1016/j.physletb.2011.12.029https://dx.doi.org/10.1016/j.physletb.2011.12.029
T.A. Weaver and S.E. Woosley. Nucleosynthesis in massive stars and the 12C(α, γ)16O reaction rate. Phys Rep, 1993, 227: 65-96. https://dx.doi.org/10.1016/0370-1573(93)90058-Lhttps://dx.doi.org/10.1016/0370-1573(93)90058-L
G. Wallerstein, I. Iben, P. Parker, et al. Synthesis of the elements in stars: forty years of progress. Rev Mod Phys, 1997, 69: 995-1084. https://dx.doi.org/10.1103/RevModPhys.69.995https://dx.doi.org/10.1103/RevModPhys.69.995
R.J. DeBoer, J. Görres, M. Wiescher, et al. The 12C(α, γ)16O reaction and its implications for stellar helium burning. Rev Mod Phys, 2017, 89: 035007. https://dx.doi.org/10.1103/RevModPhys.89.035007https://dx.doi.org/10.1103/RevModPhys.89.035007
Y.P. Shen, B. Guo, R.J. Deboer, et al. Constraining the external capture to the 16O ground state and the E2 S factor of the 12C(α, γ)16O reaction. Phys. Rev. Lett, 2020, 124: 162701. https://dx.doi.org/10.1103/PhysRevLett.124.162701https://dx.doi.org/10.1103/PhysRevLett.124.162701
D. Hollowell, Jr.I. Iben, Nucleosynthesis of solar system material in a low-mass, low-metallicity asymptotic giant branch star. Astrophysical J, 1988, 333: L25-L28. https://dx.doi.org/10.1086/185279https://dx.doi.org/10.1086/185279
R. Gallino, M. Busso, G. Picchio, et al. On the role of low-mass asymptotic giant branch stars in producing a solar system distribution of s-process isotopes. Astrophysical J, 1988, 334: L45-L49. https://dx.doi.org/10.1086/185309https://dx.doi.org/10.1086/185309
F. Käppeler, R. Gallino, S. Bisterzo, et al. The s process: Nuclear physics, stellar models, and observations. Rev Mod Phys, 2011, 83: 157-193. https://dx.doi.org/10.1103/RevModPhys.83.157https://dx.doi.org/10.1103/RevModPhys.83.157
B. Guo, Z.H. Li, M. Lugaro, et al. New determination of the 13C(α, n)16O reaction rate and ites influenceon the s-process nucleosynthesis in agb stars. Astrophysical J, 2012, 756:193. https://dx.doi.org/10.1088/0004-637X/756/2/193https://dx.doi.org/10.1088/0004-637X/756/2/193
R. Diehl, H. Halloin, K. Kretschmer, et al. Radioactive 26Al from massive stars in the Galaxy. Nature, 2006, 439: 45-47. https://dx.doi.org/10.1038/nature04364https://dx.doi.org/10.1038/nature04364
C. Gray and W. Compston. Excess 26Mg in the allende meteorite. Nature, 1974, 251: 495-497. https://dx.doi.org/10.1038/251495a0https://dx.doi.org/10.1038/251495a0
P. Hoppe, S. Amari, E. Zinner, et al. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the murchison carbonaceous chondrite. Astrophys J, 1994, 430: 870-890. https://dx.doi.org/10.1086/174458https://dx.doi.org/10.1086/174458
I. Lombardo, D. Dell’Aquila, A. Di Leva, et al. Toward a reassessment of the 19F(p, α0)16O reaction rate at astrophysical temperatures. Phys Lett B, 2015, 748: 178-182. https://dx.doi.org/10.1016/j.physletb.2015.06.073https://dx.doi.org/10.1016/j.physletb.2015.06.073
M. La Cognata, S. Palmerini, C. Spitaleri, et al. Updated thm astrophysical factor of the 19F(p, α)16O reaction and influence of new direct data at astrophysical energies. Astrophysical J, 2015, 805: 128. https://dx.doi.org/10.1088/0004-637x/805/2/128https://dx.doi.org/10.1088/0004-637x/805/2/128
J.J. He, I. Lombardo, D. Dell’Aquila, et al. (2018). Thermonuclear 19F(p, α)16O reaction rate. Chinese Phys C, 2018, 42: 015001. https://dx.doi.org/10.1088/1674-1137/42/1/015001https://dx.doi.org/10.1088/1674-1137/42/1/015001
W.P. Liu, Z.H. Li, J.J. He, et al. Progress of Jinping underground laboratory for nuclear astrophysics (JUNA). Sci China-phys Mech Astron, 2016, 59: 642001. https://dx.doi.org/10.1007/s11433-016-5785-9https://dx.doi.org/10.1007/s11433-016-5785-9
R. Betts, H. Fortune, and D. Pullen. A study of 26Al by the 25 Mg(3He, d) reaction. Nucl Phys A, 1978, 299: 412-428. https://dx.doi.org/10.1016/0375-9474(78)90380-9https://dx.doi.org/10.1016/0375-9474(78)90380-9
A. Champagne, A. Howard, and P. Parker. Threshold states in 26Al: (I). Experimental investigations. Nucl Phys A, 1983, 402: 159-178. https://dx.doi.org/10.1016/0375-9474(83)90566-3https://dx.doi.org/10.1016/0375-9474(83)90566-3
A. Champagne, A. Howard, and P. Parker. Threshold states in 26Al: (II). Extraction of resonance strengths. Nucl Phys A, 1983, 402: 179-188. https://dx.doi.org/10.1016/0375-9474(83)90567-5https://dx.doi.org/10.1016/0375-9474(83)90567-5
A. Champagne, A. McDonald, T. Wang, et al. Threshold states in 26Al revisited. Nucl. Phys. A, 1986, 451: 498-508. https://dx.doi.org/10.1016/0375-9474(86)90073-4https://dx.doi.org/10.1016/0375-9474(86)90073-4
P.M. Endt, P. de Wit, and C. Alderliesten. The 25Mg(p, γ)26Al and 25Mg(p, p’) resonances for Ep = 0.31-1.84 MeV. Nucl. Phys. A, 1986, 459: 61-76. https://dx.doi.org/10.1016/0375-9474(86)90056-4https://dx.doi.org/10.1016/0375-9474(86)90056-4
P. Endt and C. Rolfs. Astrophysical aspects of the 25Mg(p, γ)26Al reaction. Nucl Phys A, 1987, 467: 261-272. https://dx.doi.org/10.1016/0375-9474(87)90529-Xhttps://dx.doi.org/10.1016/0375-9474(87)90529-X
A. Champagne, A. Howard, M. Smith, et al. The effect of weak resonances on the 25Mg(p, γ)26Al reaction rate. Nucl Phys A, 1989, 505: 384-396. https://dx.doi.org/10.1016/0375-9474(89)90382-5https://dx.doi.org/10.1016/0375-9474(89)90382-5
A. Rollefson, V. Wijekumar, C. Browne, et al. Spectroscopic factors for proton unbound levels in 26Al and their influence on stellar reaction rates. Nucl Phys A, 1990, 507: 413-425. https://dx.doi.org/10.1016/0375-9474(90)90301-2https://dx.doi.org/10.1016/0375-9474(90)90301-2
C. Iliadis, T. Schange, C. Rolfs, et al. Low-energy resonances in 25Mg(p, γ)26Al, 26Mg(p, γ)27Al and 27Al(p, γ)28Si. Nucl. Phys. A, 1990, 512: 509-530. https://dx.doi.org/10.1016/0375-9474(90)90084-Yhttps://dx.doi.org/10.1016/0375-9474(90)90084-Y
C. Iliadis, L. Buchmann, P. Endt, et al. New stellar reaction rates for 25Mg(p, γ)26Al and 25Al(p, γ)26Si. Phys Rev C, 1996, 53: 475-496. https://dx.doi.org/10.1103/PhysRevC.53.475https://dx.doi.org/10.1103/PhysRevC.53.475
D. Powell, C. Iliadis, A. Champagne, et al. Low-energy resonance strengths for proton capture on Mg and Al nuclei. Nucl Phys A, 1998, 644: 263-276. https://dx.doi.org/10.1016/S0375-9474(98)00593-4https://dx.doi.org/10.1016/S0375-9474(98)00593-4
A. Arazi, T. Faestermann, J.O. FernSandez Niello, et al. Measurement of 25Mg(p, γ)26Al^g resonance strengths via accelerator mass spectrometry. Phys Rev C, 2006, 74: 025802. https://dx.doi.org/10.1103/PhysRevC.74.025802https://dx.doi.org/10.1103/PhysRevC.74.025802
Z.H. Li, J. Su, Y.J. Li, et al. Determination of the 25Mg(p, γ)26Al resonance strength at Ec.m.=58 keV via shell model calculation. Sci China Phys Mech, 2015, 58: 082002. https://dx.doi.org/10.1007/s11433-015-5663-xhttps://dx.doi.org/10.1007/s11433-015-5663-x
Z.H. Li, J. Su, Y.J. Li, et al. Experimental plan of the 25Mg(p, γ)26Al resonance capture reaction at Jinping underground laboratory. Nuclear Structure in China 2014, 2016: 57-63. https://dx.doi.org/10.1142/9789813109636_0011https://dx.doi.org/10.1142/9789813109636_0011
Y.J. Li, Z.H. Li, E.T. Li, et al. Indirect measurement of 57.7 keV resonance strength for 25Mg(p, γ)26Al via (7Li, 6He) reaction. Submitted to Phys Rev C.
O. Straniero, G. Imbriani, F. Strieder, et al. Impact of a reised 25Mg(p, γ)26Al reaction rate on the operation of the Mg-Al cycle. Astrophysical J, 2013, 763: 100. https://dx.doi.org/10.1088/0004-637x/763/2/100https://dx.doi.org/10.1088/0004-637x/763/2/100
H.J. Maier. Preparation of nuclear accelerator targets by vacuum evaporation. IEEE Trans Nucl Sci. 1981, 28: 1575-1583. https://dx.doi.org/10.1109/tns.1981.4331471https://dx.doi.org/10.1109/tns.1981.4331471
P.J. Kelly, R.D. Arnell. Magnetron sputtering: a review of recent developments and applications. Vacuum. 2000, 56: 159-172. https://doi.org/10.1016/S0042-207X(99)00189-Xhttps://doi.org/10.1016/S0042-207X(99)00189-X
G.J. Xu, Z.G. Zhao. Preparation of homogeneous isotopic targets with a rotating substrate. Nucl Instrum Meth A, 1993, 334: 128-131. https://dx.doi.org/10.1016/0168-9002(93)90539-thttps://dx.doi.org/10.1016/0168-9002(93)90539-t
M. Zhao, J.B. Zou, J.H. Hu. An analysis on the magnetic fluid seal capacity. J. Magn. Magn. Mater., 2006, 303: e428-e431. https://dx.doi.org/10.1016/j.jmmm.2006.01.060https://dx.doi.org/10.1016/j.jmmm.2006.01.060
L. Wen, R.K. Zhou, C.Z. Luo. Development and application of ferrofluid-seal technology. Lubrication and Sealing, 2002: 86-88+90.(in Chinese) https://dx.doi.org/CNKI:SUN:RHMF.0.2002-06-040https://dx.doi.org/CNKI:SUN:RHMF.0.2002-06-040
H. Frey, H.R. Khan. Handbook of Thin-Film Technology. Berlin(Germany): Springer-Verlag, 2015, 13-224.
B. Limata, F. Strieder, A. Formicola, et al. New experimental study of low-energy (p, γ) resonances in magnesium isotopes. Phys Rev C, 2010, 82:015801. https://dx.doi.org/10.1103/PhysRevC.82.015801https://dx.doi.org/10.1103/PhysRevC.82.015801
M. Wiescher, H.W. Becker, J. Görres, et al. Nuclear and astroohysical aspects of 18O(p, γ)19F. Nucl Phys A, 1980, 349:165-216. https://dx.doi.org/10.1016/0375-9474(80)90451-0https://dx.doi.org/10.1016/0375-9474(80)90451-0
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution