1.Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
2.Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210023, China
Corresponding author, weijj@pmo.ac.cn
Scan for full text
Jia-Ju Wei, Jian-Hua Guo, Yi-Ming Hu. Characterization of silicon microstrip sensors for space astronomy. [J]. Nuclear Science and Techniques 31(10):97(2020)
Jia-Ju Wei, Jian-Hua Guo, Yi-Ming Hu. Characterization of silicon microstrip sensors for space astronomy. [J]. Nuclear Science and Techniques 31(10):97(2020) DOI: 10.1007/s41365-020-00811-9.
Silicon microstrip detectors are widely used in experiments for space astronomy. Before the detector is assembled, extensive characterization of the silicon microstrip sensors is indispensable and challenging. This work electrically evaluates a series of sensor parameters, including the depletion voltage, bias resistance, metal strip resistance, total leakage current, strip leakage current, coupling capacitance, and interstrip capacitance. Two methods are used to accurately measure the strip leakage current, and the test results match each other well. In measuring the coupling capacitance, we extract the correct value based on a SPICE model and two-port network analysis. In addition, the expression of the measured bias resistance is deduced based on the SPICE model.
Silicon microstrip sensorSpace astronomyCharacterizationSPICE model
Y. Cai, Y. Li, L. Wen, et al., Progress of single event effects and hardening technology of CMOS image sensors. Nuclear Techniques. 43, 010502 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.010502https://doi.org/10.11889/j.0253-3219.2020.hjs.43.010502 (in Chinese)
H. Wang, C. Xu, C. Zhao, et al., Chip position correction method for a multi-layer muon radiography detector. Nuclear Techniques. 42, 070403 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.070403https://doi.org/10.11889/j.0253-3219.2019.hjs.42.070403 (in Chinese)
J. Sun, Q. Guo, Q. Zheng, et al., Radiation response characteristics of an embeddable SOI radiation sensor. Nuclear Techniques. 42, 120501 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.120501https://doi.org/10.11889/j.0253-3219.2019.hjs.42.120501 (in Chinese)
Z. Zhao, H. Xu, P. Gong et al., Management and query system for the beamline operation data based on Archiver Appliance at SSRF. Nuclear Techniques. 41, 030102 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.030102https://doi.org/10.11889/j.0253-3219.2018.hjs.41.030102 (in Chinese)
X. Xu, F. Teh, C. Lin, et al., Characterization of CIAE developed double-sided silicon strip detector for charged particles. Nucl. Sci. Tech. 29, 73 (2018). https://doi.org/10.1007/s41365-018-0406-0https://doi.org/10.1007/s41365-018-0406-0
D. Wang, C. Lin, L. Yang, et al.,Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. Nucl. Sci. Tech. 31, 48 (2020). https://doi.org/10.1007/s41365-020-00755-0https://doi.org/10.1007/s41365-020-00755-0
S. Wang, W. Chen, J. Guo et al., Design and testing of a miniature silicon strip detector. Nucl. Sci. Tech. 31, 7 (2019). https://doi.org/10.1007/s41365-019-0714-zhttps://doi.org/10.1007/s41365-019-0714-z
J. Wei, A prototype silicon strip detector for space astronomy. Nucl. Tech. 41, 120402 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.120402https://doi.org/10.11889/j.0253-3219.2018.hjs.41.120402 (in Chinese)
R. Turchetta, Spatial resolution of silicon microstrip detectors. Nucl. Instrum. Meth. Physics Research Section A. 335, 44-58 (1993). https://doi.org/10.1016/0168-9002(93)90255-Ghttps://doi.org/10.1016/0168-9002(93)90255-G
G. Barichello, A. Cervera-Villanueva, D.C. Daniels, et al., Performance of long modules of silicon microstrip detectors. Nuclear Instruments and Methods in Physics Research Section A. 413, 17-30 (1998). https://doi.org/10.1016/S0168-9002(98)00481-1https://doi.org/10.1016/S0168-9002(98)00481-1
S. Ricciarini, PAMELA silicon tracking system: Experience and operation. Nuclear Instruments and Methods in Physics Research Section A. 582, 892-897 (2007). https://doi.org/10.1016/j.nima.2007.07.116https://doi.org/10.1016/j.nima.2007.07.116
S. Straulino, O. Adriani, L. Bonechi et al., The PAMELA silicon tracker. Nuclear Instruments and Methods in Physics Research Section A. 530, 168-172 (2004). https://doi.org/10.1016/j.nima.2004.05.067https://doi.org/10.1016/j.nima.2004.05.067
G. Barbiellini, G. Fedel, F. Liello, et al., The AGILE silicon tracker: testbeam results of the prototype silicon detector. Nuclear Instruments and Methods in Physics Research Section A. 490, 146-158 (2002). https://doi.org/10.1016/S0168-9002(02)01062-8https://doi.org/10.1016/S0168-9002(02)01062-8
E. Vallazza, G. Barbiellini, M. Basset, et al., The AGILE gamma ray satellite: the construction and performance of the silicon tracker. Paper presented at Nuclear Science Symposium Conference Record, IEEE, 2004. https://doi.org/10.1109/nssmic.2004.1462176https://doi.org/10.1109/nssmic.2004.1462176
L. Latronico, G. Spandre, The GLAST large area telescope: Design, construction, test and calibration. Nuclear Instruments and Methods in Physics Research Section A. 581, 160-163 (2007). https://doi.org/10.1016/j.nima.2007.07.051https://doi.org/10.1016/j.nima.2007.07.051
H. Tajima, GLAST Tracker. Nucl. Instrum. Meth. A. 569, 140-143 (2006). https://doi.org/10.1016/j.nima.2006.08.063https://doi.org/10.1016/j.nima.2006.08.063
J. Alcaraz, B. Alpat, G. Ambrosi, et al., The alpha magnetic spectrometer silicon tracker: Performance results with protons and helium nuclei. Nuclear Instruments and Methods in Physics Research Section A. 593, 376-398 (2008). https://dx.doi.org/10.1016/j.nima.2008.05.015https://dx.doi.org/10.1016/j.nima.2008.05.015
P. Zuccon, The AMS silicon tracker: Construction and performance. Nuclear Instruments and Methods in Physics Research Section A. 596, 74-78 (2008). https://doi.org/10.1016/j.nima.2008.07.116https://doi.org/10.1016/j.nima.2008.07.116
P. Azzarello, G. Ambrosi, R. Asfandiyarov, et al., The DAMPE silicon-tungsten tracker. Nuclear Instruments and Methods in Physics Research Section A. 831, 378-384 (2016). https://doi.org/10.1016/j.nima.2016.02.077https://doi.org/10.1016/j.nima.2016.02.077
J. Chang, G. Ambrosi, Q. An, et al., The DArk Matter Particle Explorer mission. Astroparticle Physics. 95, 6-24 (2017). https://doi.org/10.1016/j.astropartphys.2017.08.005https://doi.org/10.1016/j.astropartphys.2017.08.005
S. Ishikawa, S. Saito, H. Tajima, et al., Fine-Pitch Semiconductor Detector for the FOXSI Mission. IEEE T. Nucl. Sci. 58, 2039-2046 (2011). https://doi.org/10.1109/tns.2011.2154342https://doi.org/10.1109/tns.2011.2154342
S. Christe, L. Glesener, C. Buitrago-Casas et al., FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight. J. Astronomical Instrumentation. 05, 1640005 (2016). https://doi.org/10.1142/s2251171716400055https://doi.org/10.1142/s2251171716400055
N. Bacchetta, D. Bisello, C. Calgarotto et al., A SPICE model for Si microstrip detectors and read-out electronics. IEEE Transactions on Nuclear Science. 43, 1213-1219 (1996). https://doi.org/10.1109/23.506666https://doi.org/10.1109/23.506666
R. Qiao, W. Peng, X. Cui, et al., A charge sharing study of silicon microstrip detectors with electrical characterization and SPICE simulation. Advances in Space Research. 64, 2627-2633 (2019). https://doi.org/10.1016/j.asr.2019.07.005https://doi.org/10.1016/j.asr.2019.07.005
T. Ohsugi, S. Yoshida, Y. Fukazawa, et al., Design and properties of the GLAST flight silicon micro-strip sensors. Nuclear Instruments and Methods in Physics Research Section A. 541, 29-39 (2005). https://doi.org/10.1016/j.nima.2005.01.035https://doi.org/10.1016/j.nima.2005.01.035
Philipp Azzarello, Dissertation, University of De Geneve, 2004.
N.L. Bruner, M. A. Frautschi, M.R. Hoeferkamp, et al., Characterization procedures for double-sided silicon microstrip detectors. Nuclear Instruments and Methods in Physics Research Section A. 362, 315-337 (1995). https://doi.org/10.1016/0168-9002(95)00280-4https://doi.org/10.1016/0168-9002(95)00280-4
W. Dabrowski, P. Gryboś, M. Idzik, et al., Study of spatial resolution and efficiency of silicon strip detectors with different readout schemes. Nuclear Instruments and Methods in Physics Research Section A. 356, 241-254 (1995). https://doi.org/10.1016/0168-9002(94)01398-5https://doi.org/10.1016/0168-9002(94)01398-5
Tektronix Inc., Model 4200A-SCS parameter analyzer reference manual (January 2019). https://www.tek.com/keithley-4200a-scs-parameter-analyzer-manual/model-4200a-scs-parameter-analyzer-reference-manualhttps://www.tek.com/keithley-4200a-scs-parameter-analyzer-manual/model-4200a-scs-parameter-analyzer-reference-manual. Accessed 1 March 2020
Integrated Sensor Electronics AS (IDEAS) Inc., The product information of IDE1140, https://ideas.no/products/ide1140/https://ideas.no/products/ide1140/. Accessed 20 June 2020
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution