1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China
3.Center for Superconducting RF and Cryogenics, Institute of High Energy Physics, Beijing 100049, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, gerui@ihep.ac.cn
Scan for full text
Miao-Fu Xu, Xiang-Zhen Zhang, Rui Ye, et al. Design, assembly, and pre-commissioning of cryostat for 3W1 superconducting wiggler magnet. [J]. Nuclear Science and Techniques 31(11):113(2020)
Miao-Fu Xu, Xiang-Zhen Zhang, Rui Ye, et al. Design, assembly, and pre-commissioning of cryostat for 3W1 superconducting wiggler magnet. [J]. Nuclear Science and Techniques 31(11):113(2020) DOI: 10.1007/s41365-020-00816-4.
Abstract,— One of the most important devices for the High Energy Photon Source Test Facility project, the 2.6 T 32-pole 3W1 superconducting wiggler, was designed by the Institute of High Energy Physics (IHEP); its magnetic gap is 68 mm, and its storage energy is 286 kJ. It will be installed at the storage ring of the Beijing Electron Positron Collider Upgrade Project at the IHEP to replace the old permanent wiggler. The primary purpose of the cryostat is to create a safe and reliable system and realize long-term operation with zero liquid helium consumption. To maintain liquid helium temperature, four identical two-stage cryocoolers are placed symmetrically at the wiggler ends. The cryostat has only one 60 K thermal shield, which is used to reduce the heat load to the liquid helium vessel. The cryostat has several novel features, including a suspension system with little heat leakage that is self-centered during cooling of the cryostat, a special copper liner and high-efficiency condensers, three pairs of binary current leads, and three-level safety design. The cryogenic system has been cooled three times, and the residual cooling capacity is approximately 0.41 W at 4.2 K without current.
CryostatCryocoolerSuperconducting wigglerSuperconducting insertion device
N. Mezentsev, E. Wallen, Superconducting wigglers. Synchrotron Radiation News.24:3, 3-9(2011). https://doi.org/10.1080/08940886.2011.583883https://doi.org/10.1080/08940886.2011.583883
S.V. Khruschev, E.A. Kuper, V.H. Lev, et al., Superconducting 63-pole 2T wiggler for Canadian Light Source. Nuclear Instruments and Methods in Physics Research A. 575, 38-41(2007). https://doi.org/10.1016/j.nima.2007.01.019https://doi.org/10.1016/j.nima.2007.01.019
A. A. Volkov, V. K. Lev, N. A. Mezentsev, et al., Superconducting 119-pole wiggler with a 2.1-T field and 30-mm period length for the ALBA storage ring. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 6(3):379-387 (2012). https://doi.org/10.1134/S1027451012050199https://doi.org/10.1134/S1027451012050199
S.V. Khrushchev, V.K. Lev, N.A. Mezentsev, et al., SUPERCONDUCTING 119-POLE WIGGLER FOR ALBA LIGHT SOURCE. Proceedings of IPAC2011, San Sebastián, THPC172(2011). https://doi.org/10.1016/j.nima.2007.01.019https://doi.org/10.1016/j.nima.2007.01.019
R. S. Amin, P. Jines, D.J. Launey, et al., A preliminary report from Louisiana State University CAMD storage ring operating with an 11 pole 7.5 tesla wiggler. Proceedings of IPAC2015, Richmond, TUPJE034 (2016). https://doi.org/10.18429/JACoW-IPAC2015-TUPJE034https://doi.org/10.18429/JACoW-IPAC2015-TUPJE034
A. A. Volkov, A. V. Zorin, V. Kh. Lev,et al., The superconducting 15-pole 7.5 Tesla wiggler in the LSU-CAMD storage ring. Bulletin of the Russian Academy of Sciences: Physics, 2015.https://doi.org/10.3103/s1062873815010384https://doi.org/10.3103/s1062873815010384
Y. He, G. Codner, R.D. Ehrlich, et al., Design and operation of the cryostat for the CESR-C superconducting wiggler magnets. Proceedings of the 2003 Particle Accelerator Conference. 2399-2401(2003). https://doi.org/10.1109/PAC.2003.1289133https://doi.org/10.1109/PAC.2003.1289133
S. Casalbuoni, A. Cecilia, S. Gerstl, et al., Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source. Physical Review Accelerators & Beams (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.110702https://doi.org/10.1103/PhysRevAccelBeams.19.110702
X. Liu, Z.J. Wu, H.Y. He, et al., Cryogenic mechanical properties of unidirectional carbon fiber reinforced epoxy composite. Acta Materiae Compositae Sinica. 34(11): 2437-2445 (2017). https://doi.org/10.13801/j.cnki.fhclxb.20170224.001https://doi.org/10.13801/j.cnki.fhclxb.20170224.001
X. Liu, Z.J. Wu, Y.C. Cai, et al., Effect of Cryogenic Treatment on Tension Compression Fatigue Properties of T700/Epoxy Composite[J].Journal of Astronautics, 35(7):850-856(2014). https://doi.org/10.3873/j.issn.1000—1328.2014.07.015https://doi.org/10.3873/j.issn.1000—1328.2014.07.015
S. Khrushchev, N. Mezentsev, V. Lev, et al., Superconducting multipole wigglers: state of art. Proceedings of the 5th International Particle Accelerator Conference 2014. WEPRI091, 4103-4106(2014). https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091
Y.S. Choi, M.S. Kim, Performance test of current lead cooled by a cryocooler in low temperature superconducting magnet system. Physica C. 494, 355-359(2013). https://doi.org/10.1016/j.physc.2013.04.085https://doi.org/10.1016/j.physc.2013.04.085
H.H. Chen, C.S. Hwang, C.H. Chang, et al., Design of mechanical structure and cryostat for iasw superconducting wiggler at nsrrc. Proceedings of PAC07, USA, MOPAN091. P374-376(2007). https://doi.org/10.1109/PAC.2007.4440216https://doi.org/10.1109/PAC.2007.4440216
R.E. barron, Cryogenic heat transfer. Taylor @ Francis, Philadelphia, P180-181(1999). https://doi.org/10.1016/S0065-2717(08)70132-1https://doi.org/10.1016/S0065-2717(08)70132-1
H.B.S. Introduction to the Transfer of Heat and Mass. Journal of the Royal Aeronautical Society 54(479):716 (1950). https://doi.org/10.1017/S0368393100116177https://doi.org/10.1017/S0368393100116177
J.D. Herbert, O.B. Malyshev, K.J. Middleman, et al., Design of the vacuum system for Diamond, the UK third generation light source. Vacuum 73(2), 219-224(2004). https://doi.org/10.1016/j.vacuum.2003.12.019https://doi.org/10.1016/j.vacuum.2003.12.019
R. P. Reed, A. F. Clark, L. G. Rubin. Materials at low temperatures. Metals Park, Ohio 44073: American Society for Metals(1983). https://doi.org/10.1063/1.2916172https://doi.org/10.1063/1.2916172
A. Bragin, Y. Gusev, S. Khrushchev, et al., Superconducting 72-pole Indirect Cooling 3Tesla Wiggler for CLIC Damping Ring and ANKA Image Beamline. Physics Procedia, 84:54-61 (2016). https://doi.org/10.1016/j.phpro.2016.11.010https://doi.org/10.1016/j.phpro.2016.11.010
A. A. Volkov, V. K. Lev, N. A. Mezentsev, et al. Superconducting 119-pole wiggler with a 2.1-T field and 30-mm period length for the ALBA storage ring. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 6(3):379-387(2012). https://doi.org/10.1134/S1027451012050199https://doi.org/10.1134/S1027451012050199
M. F. Xu, R. Ge, L. Bian, et al. Design and Research of Cryostat for 3W1 Superconducting Wiggler Magnet. IEEE Transactions on Applied Superconductivity, 28(3):1-6(2018). https://doi.org/10.1109/TASC.2018.2790380https://doi.org/10.1109/TASC.2018.2790380
E. Wallen, G. LeBlac, The MAX-Wiggler: Design, Construction And Commissioning Of A 3.5 T Superconducting Wiggler With 47 Poles. AIP Conference Proceedings 705, 219(2004). https://doi.org/10.1063/1.1757773https://doi.org/10.1063/1.1757773
A. M. Batrakov, S.V. Khruschev, G. N. Kulipanov, et al., Superconducting Insertion Devices for Light Sources at Budker INP. AIP Conf. Proc.879, 305(2007). https://doi.org/10.1063/1.2436061https://doi.org/10.1063/1.2436061
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution