1.Department of Physics, University of Yazd, Yazd, Iran
2.Department of Medical Radiation Engineering, University of Science and Research Branch Tehran, Tehran, Iran
Corresponding author: sajadkeshavarz7@gmail.com
Scan for full text
Sepideh Yazdani Darki, Sajad Keshavarz. Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes. [J]. Nuclear Science and Techniques 31(12):119(2020)
Sepideh Yazdani Darki, Sajad Keshavarz. Studies on mass attenuation coefficients for some body tissues with different medical sources and their validation using Monte Carlo codes. [J]. Nuclear Science and Techniques 31(12):119(2020) DOI: 10.1007/s41365-020-00827-1.
The mass attenuation coefficients of the breasts, lungs, kidneys, pancreas, liver, eye lenses, thyroid, brain, ovary, heart, large intestines, blood, skin, spleen, muscle, and cortical bone were measured at different sources (i.e., 0.021, 0.029, 0.03, 0.14, 0.218, 0.38, 0.412, 0.663, 0.83, and 1.25 MeV) using various methods including the Monte Carlo N-particle transport code (MCNP), the Geometry and Tracking code (GEANT4), and theoretical approach described in this study. Mass attenuation coefficients were also compared with the values from the National Institute of Standards and Technology (NIST-XCOM). The values obtained were similar to those obtained using NIST-XCOM. Our results show that the theoretical method is quite convenient in comparison to GEANT4 and MCNP in the calculation of the mass attenuation coefficients of the human body samples applied when compared with the NIST values and demonstrated an acceptable difference.
Mass attenuation coefficientMCNPGeant4XCOMHuman organs
A.C. Moreno, R.J. Kudchadker, J. Wang, et al., MRI Image-Guided Low-Dose Rate Brachytherapy for Prostate Cancer. In: Mayadev J., Benedict S., Kamrava M. (eds) Handbook of Image-Guided Brachytherapy. Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-44827-5_12https://doi.org/10.1007/978-3-319-44827-5_12.
J.C. Blasko, P.D. Grimm, J.E. Sylvester, et al., Palladium-103 brachytherapy for prostate carcinoma. Int. J. Radiation Oncology Biol. Phys 46,839-850 (2000). https://doi.org/10.1016/S0360-3016(99)00499-Xhttps://doi.org/10.1016/S0360-3016(99)00499-X.
T.L. Fowler, M.K. Buyyounouski, C.H. Jenkins, et al., Clinical implementation of 3D printing for brachytherapy: techniques and emerging applications. Brachytherapy 15, S166 (2016). https://doi.org/10.1016/j.brachy.2016.04.297https://doi.org/10.1016/j.brachy.2016.04.297
E.A. Markelova, S.S. Khujaev, A. Vasidov. The calculation of barium-131 radioactivity and obtaining the cesium-131 from barium-131 at Nuclear Reactor. Uzbekiston Fizika Zhurnali 13, 381-386 (2011). https://inis.iaea.org/search/search.aspx?orig_q=RN:44048651https://inis.iaea.org/search/search.aspx?orig_q=RN:44048651.
M. Fragoso, P.A. Love, F.V. erhaegen, et al., The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement. Physics in Medicine & Biology 49, 5459-5474 (2004). https://doi.org/10.1088/0031-9155/49/24/005https://doi.org/10.1088/0031-9155/49/24/005.
F. Issa, A.A. Rahman, R.P. Hugtenburg, et al., Establishment of Ge-doped optical fibers as thermoluminescence dosimeters for brachytherapy. Appli. Radiation and Isotopes 70, 1158-1161(2012). https://doi.org/10.1016/j.apradiso.2011.12.027https://doi.org/10.1016/j.apradiso.2011.12.027.
M.G. David, C. Salata, P.H. Rosado, et al., Determination of the chemical yield on the Fricke dosimetry for 192Ir sources used in brachytherapy. Brazilian Congress of Metrology, (2015). https://hdl.handle.net/2050011876/943https://hdl.handle.net/2050011876/943.
M.E. Alden, M. Mohiuddin, The impact of radiation dose in combined external beam and intraluminal Ir-192 brachytherapy for bile duct cancer. Int. J. Radiation Oncology Biol. Phys 28, 945-951 (1994). https://doi.org/10.1016/0360-3016(94)90115-5https://doi.org/10.1016/0360-3016(94)90115-5.
I. El. Gamal, C. Cojocaru, E. Mainegra-Hing, et al., The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy. Physics in Medicine & Biology 60, 4481-4495 (2015). https://doi.org/10.1088/0031-9155/60/11/4481https://doi.org/10.1088/0031-9155/60/11/4481.
E.C. Merchan, M. Magallon, J. Martin-Villar, et al., Long term follows up of hemophilic arthropathy treated by Au-198 radiation synovectomy. International orthopedics 17, 120-124 (1993). https://doi.org/10.1007/BF00183554https://doi.org/10.1007/BF00183554.
J. Dybicki, O. J. Balchum, G.R. Meneely, et al., Treatment of pleural and peritoneal effusion with intracavitary colloidal radiogold (Au 198). AMA Arch. Intern. Med. 104, 802-815 (1959). https://doi.org/10.1001/archinte.1959.00270110122017https://doi.org/10.1001/archinte.1959.00270110122017.
M.I. Sayyed, F. Akman, I.H. Geçibesler, et al., Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl. Sci. Tech. 29, 144 (2018). https://doi.org/10.1007/s41365-018-0475-0https://doi.org/10.1007/s41365-018-0475-0.
A. Bagulya, J.M. Brown, H. Burkhardt, et al., Recent progress of GEANT4 electromagnetic physics for LHC and other applications. J Phys. Conference Series 898, 042032 (2017). https://doi.org/10.1088/1742-6596/898/4/042032https://doi.org/10.1088/1742-6596/898/4/042032.
J.L. Venselaar, P.H. Van der Giessen, W.J. Dries, Measurement and calculation of the dose at large distances from brachytherapy sources: Cs-137, Ir-192, and Co-60. Med. Phys. 23, 537-543 (1996).https://doi.org/10.1118/1.597811https://doi.org/10.1118/1.597811.
G. Kemikiler, History of Brachytherapy. Turk J Oncol. 34, 1-10 (2019). https://doi.org/10.5505/tjo.2019.1https://doi.org/10.5505/tjo.2019.1.
R.J. Gibbons, Myocardial perfusion imaging. Heart 83, 355-360 (2000). https://doi.org/10.1136/heart.83.3.355https://doi.org/10.1136/heart.83.3.355.
C.P. Goddard, A.H. Stead, P.A. Mason, et al., An iodine-125 radioimmunoassay for the direct detection of benzodiazepines in blood and urine. Analyst 111, 525-529 (1986). https://doi.org/10.1039/AN9861100525https://doi.org/10.1039/AN9861100525.
M.R. Ioan, V. Fugaru, S. Bercea, et al., Co-60 Specific Gamma-Ray Constant (Γ) Determinations for Various Biological Materials Involved in Radiotherapy Procedures, by Using GEANT4 and NIST XCOM. Rom. J. Phys 63. 701(2018). https://www.researchgate.net/publication/319442968https://www.researchgate.net/publication/319442968.
E.E. Ermis, F.B. Pilicer, E. Pilicer, et al., A comprehensive study for mass attenuation coefficients of different parts of the human body through Monte Carlo methods. Nucl. Sci. Tech. 27, 54 (2016). https://doi.org/10.1007/s41365-016-0053-2https://doi.org/10.1007/s41365-016-0053-2.
M.S. Al-Buriahi, H. Arslan, B.T. Tonguç, Mass attenuation coefficients, water, and tissue equivalence properties of some tissues by Geant4, XCOM, and experimental data. IJPAP 57, 433-437 (2019). https://op.niscair.res.in/index.php/IJPAP/article/view/22878/465477021https://op.niscair.res.in/index.php/IJPAP/article/view/22878/465477021.
H.C. Manjunatha, L. Seenappa, Pocket formula for mass attenuation coefficient, effective atomic number, and electron density of human tissues. Nucl. Sci. Tech. 30, 1-8 (2019). https://doi.org/10.1007/s41365-019-0565-7https://doi.org/10.1007/s41365-019-0565-7.
A.H. Taqi, H.J. Khalil, Experimental, and theoretical investigation of gamma attenuation of building materials. J. Nucl. Particle Phys. 7, 6-13 (2017). https://doi.org/10.5923/j.jnpp.20170701.02https://doi.org/10.5923/j.jnpp.20170701.02.
H. Arslan, Photon attenuation parameters for some tissues from Geant4 simulation, theoretical calculations, and experimental data: a comparative study. Nucl. Sci. Tech. 30, 96p1-10 (2019). https://doi.org/10.1007/s41365-019-0617-zhttps://doi.org/10.1007/s41365-019-0617-z.
B. Ababneh, R. Hashim, I.L. Shuaib, Investigation of mass attenuation coefficient of almond gum bonded Rhizophora spp. particleboard as equivalent human tissue using XRF technique in the 16.6-25.3 keV photon energy. Australas Phys. Eng. Sci. Med. 39, 871-876 (2016). https://doi.org/10.1007/s13246-016-0482-6https://doi.org/10.1007/s13246-016-0482-6.
M. Alssabbagh, A.A. Tajuddin, M.B. Manap, et al., Evaluation of nine 3D printing materials as tissue- equivalent materials in terms of mass attenuation coefficient and mass density. INTERNATIONAL J. Adv. Appl. Sci. 4, 168-173 (2017). https://www.researchgate.net/publication/321823909https://www.researchgate.net/publication/321823909.
A.M. El-Khayatt, A.M. Ali, V.P. Singh, et al., Determination of mass attenuation coefficient of low-Z dosimetric materials. Radiation Effects Defects in Solids 169, 1038-44 (2014). https://doi.org/10.1080/10420150.2014.988626https://doi.org/10.1080/10420150.2014.988626.
M. Bethesda. Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements (ICRU), (1989).
Y.S. Rammah, A.S. Abouhaswa, A.H. Salama, et al., Optical, magnetic characterization, and gamma-ray interactions for borate glasses using XCOM program. J Theor. Appl. Phys. 13, 155-164(2019). https://doi.org/10.1007/s40094-019-0331-6https://doi.org/10.1007/s40094-019-0331-6.
J.H. Hubbell, Photon cross-section, attenuation coefficient, and energy absorption coefficients from 10 keV to 100 GeV. NSRDS-NBS 29 C (1969).
G. Lakshminarayana, M.I. Sayyed, S.O. Baki, et al., Borotellurite glasses for gamma-ray shielding: an exploration of photon attenuation coefficients and structural and thermal properties. Journal of Elec Materi. 48, 930-941 (2019). https://doi.org/10.1007/s11664-018-6810-8https://doi.org/10.1007/s11664-018-6810-8.
V.P. Singh, S.P. Shirmardi, M.E. Medhat, et al., Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284-288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006https://doi.org/10.1016/j.vacuum.2015.06.006.
H.O. Tekin, E.E. Altunsoy, T. Manici, et al., Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iranian J Med. Phys. 14, 229-240 (2017). https://doi.org/10.22038/IJMP.2017.23478.1230https://doi.org/10.22038/IJMP.2017.23478.1230.
A. Bagulya, J.M. Brown, H. Burkhardt, et al., Recent progress of GEANT4 electromagnetic physics for LHC and other applications. J Phys. Conf. Series 898, 042032 (2017). https://doi.org/10.1088/1742-6596/898/4/042032https://doi.org/10.1088/1742-6596/898/4/042032.
K. Özge, H.O. Tekin, V.P. Singh, Determination of mass attenuation coefficients of different types of concretes using Monte Carlo method. EJOSAT 15, 591-598 (2019). https://doi.org/10.31590/ejosat.535203https://doi.org/10.31590/ejosat.535203.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution