1.The Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
Corresponding author, Lilizhihui@scu.edu.cn
Scan for full text
Hao-Yun Li, Xin-Miao Wan, Wei Chen, et al. Optimization of the S-band side-coupled cavities for proton acceleration. [J]. Nuclear Science and Techniques 31(3):23(2020)
Hao-Yun Li, Xin-Miao Wan, Wei Chen, et al. Optimization of the S-band side-coupled cavities for proton acceleration. [J]. Nuclear Science and Techniques 31(3):23(2020) DOI: 10.1007/s41365-020-0735-7.
The proton beam with energy around 100 MeV has seen wide applications in modern scientific research and in various fields. However, proton sources in China fall short for meeting experimental needs owing to the vast size and expensive traditional proton accelerators. The Institute of Nuclear Science and Technology of Sichuan University proposed to build a 3 GHz side-coupled cavity linac (SCL) for re-accelerating a 26 MeV proton beam extracted from a CS-30 cyclotron to 120 MeV. We carried out investigations into several vital factors of S-band SCL for proton acceleration, such as optimization of SCL cavity geometry, end cell tuning, and bridge coupler design. Results demonstrated that the effective shunt impedance per unit length ranged from 22.5 to 59.8 MΩ/m throughout the acceleration process, and the acceleration gradient changed from 11.5 to 15.7 MV/m when the maximum surface electric field was equivalent to Kilpatrick electric field. We obtained equivalent circuit parameters of the biperiodic structures and applied them to the end cell tuning; results of the theoretical analysis agreed well with the 3D simulation. We designed and optimized a bridge coupler based on the previously obtained biperiodic structure parameters, and the field distribution un-uniformness was < 1.5% for a two-tank module. The radio frequency (RF) power distribution system of the linac was obtained based on the preliminary beam dynamics design.
Proton beamSide-coupled cavity linacAccelerating cavityBiperiodic structureBridge coupler.
D.I. Thwaites, J.B. Tuohy, Back to the future: the history and development of the clinical linear accelerator. Phys. Med. Biol. 51(13), 343-362 (2006). https://doi.org/10.1088/0031-9155/51/13/R20https://doi.org/10.1088/0031-9155/51/13/R20
Samy Hanna, RF linear accelerators for medical and industrial applications. (Artech House, Boston/London 2012), pp. 1-10
T. Wangler, RF Linear Accelerators, (John Wiley & sons, New York, 1998), pp. 2-30
U. Amaldi, S. Braccini, P. Puggioni, High frequency linacs for hadrontherapy. Rev. Accel. Sci. Tech. 02(01), 111-131 (2009). https://doi.org/10.1142/S179362680900020Xhttps://doi.org/10.1142/S179362680900020X
U. Amaldi, P. Berra, K. Crandall, et al., LIBO—a linac-booster for protontherapy: construction and tests of a prototype. Nucl. Instrum. Methods Phys. Res., Sect. 521(2-3), 512-529 (2004). https://doi.org/10.1016/j.nima.2003.07.062https://doi.org/10.1016/j.nima.2003.07.062
S. Benedetti, A. Grudiev, A. Latina, High gradient linac for proton therapy. Phys. Rev. Spec. Top. --Accel. Beams. 20(4), 040101 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.040101https://doi.org/10.1103/PhysRevAccelBeams.20.040101
G.Y. Jiang, S.Q. Tan, H. Zhao et al., Dynamic power supply controls in Shanghai proton therapy facility. Nucl. Tech. 41(02), 0204041 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020404https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020404 (In Chinese)
Y.Q. Cai, Q.X. Yang, K.Z. Ding, et al., Use of radiochromic film for diagnosis of accelerator beam position. Nucl. Tech. 42(01), 010202 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.010202https://doi.org/10.11889/j.0253-3219.2019.hjs.42.010202
P. Berra, Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy. Wur Wageningen Ur. 2010(5), 401-408 (2009). https://doi.org/10.1016/0164-1212(88)90031-3https://doi.org/10.1016/0164-1212(88)90031-3
U. Amaldi, B. Szeless, M. Vretenar, et al., LIBO: a 3 GHz Proton Linac Booster of 200 MeV for Cancer Treatment, Paper Presented at the XIX International Linear Accelerator Conference (Chicago, USA 23-28 Aug. 1998)
R.W. Hamm, K.R. Crandall, J.M. Potter, Preliminary design of a dedicated proton therapy linac, Paper Presented at the Particle Accelerator Conference (San Francisco, USA 6-9 May. 1991)
N. Liu, Y.Y. Yang, J.N. Jin et al., Preparation of radioactive isotopes by CS-30 cyclotron and their application. Journal of Isotopes. 25(03), 189-192 (2012). https://dio.org/10.7538/tws.2012.25.03.0189https://dio.org/10.7538/tws.2012.25.03.0189 (In Chinese)
Pierre M Lapostolle, Albert L Septier, Linear accelerators, (Elsevier, New York, 1970), pp. 1148-1156
S. Kulinski, J. Sekutowicz, Five parameter method of tuning of biperiodic π/2 accelerating structures, Paper Presented at the European Particle Accelerator Conference (Stockholm, Sweden 22-26 Jun. 1998)
R. Wegner, F. Gerigk, A Comparison of pi/2-mode standing wave structures for Linac4. (Accelerators and Storage Rings, 2007). http://cds.cern.ch/record-restricted/1005812/?ln=hrhttp://cds.cern.ch/record-restricted/1005812/?ln=hr
LAACG, Superfish Code. (Los Alamos Accelerator Code Group, 2003). https://laacg.lanl.gov/laacg/services/download_sf.phtmlhttps://laacg.lanl.gov/laacg/services/download_sf.phtml
P. Puggioni, Dissertation (Universita degli Studi di 'Milano-Bicocca at Milano Italy, 2008)
E. A. Knapp, B. C. Knapp, James M. Potter, Standing Wave High Energy Linear Accelerator Structures. Rev. Sci. Instrum. 39(7), 979-991 (1968). https://doi.org/10.1063/1.1683583https://doi.org/10.1063/1.1683583
D. E. Nagle, E. A. Knapp, B. C. Knapp, Coupled Resonator Model for Standing Wave Accelerator Tanks. Rev. Sci. Instrum. 38(11), 1583-1587 (1967). https://doi.org/10.1063/1.1720608https://doi.org/10.1063/1.1720608
R. Krishnan, S. N. Pethe, Rajat Roy, O. Shanker, Analysis of side coupled standing wave linear accelerator structure by the perturbation method. IEEE Trans. Nucl. Sci. 40(5), 1333-1336 (1993). https://doi.org/10.1063/1.1683583https://doi.org/10.1063/1.1683583
O. Shanker, Generalization of linac mode spectrum and fitting procedure. Rev. Sci. Instrum. 63(10), 4443-4445 (1998). https://doi.org/10.1063/1.1143694https://doi.org/10.1063/1.1143694
L. Dario, F.M. Christian, B. Michele, et al., Electromagnetic design of microwave cavities for side-coupled linear accelerators: a hybrid numerical/analytical approach. IEEE Trans. Nucl. Sci. 1(1), 2233-2239 (2018). https://doi.org/10.1109/TNS.2018.2851387https://doi.org/10.1109/TNS.2018.2851387
R. W. de Leeuw, J. E. Coppens, W.J.G.M. Kleeven, et al., Design Study for the Accelerating Cavity of the Racetrack Microtron Eindhoven. Paper Presented at the 4th European Particle Accelerator Conference (London, UK 27 Jun-1 Jul. 1994)
Z. Chen. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source. Paper Presented at the Eighth European Particle Accelerator Conference (La Villette, Paris 3-7 Jun. 2002)
P. T. Greninger et al, Bridge coupler for APT. Paper Presented at the Proceedings of the 2000 International Linac Conference (Monterey, Ca. USA 21-25 Aug. 2000)
L.B. Liu, C.L. Li, P.Y. Yu, et al., Development of RF superconducting cavity forward power coupler. Nucl. Tech. 42(2), 020201 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.020201https://doi.org/10.11889/j.0253-3219.2019.hjs.42.020201
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution