1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Key Laboratory of Particle Acceleration Physics & Technology, CAS, Beijing 100049, China
3.Center for Superconducting RF and Cryogenics, Institution of High Energy Physics, Beijing 100049, China
Corresponding author, gerui@ihep.ac.cn
Scan for full text
Rui Ge, Shao-Peng Li, Rui-Xiong Han, et al. ADS injector-I 2 K superfluid helium cryogenic system. [J]. Nuclear Science and Techniques 31(4):39(2020)
Rui Ge, Shao-Peng Li, Rui-Xiong Han, et al. ADS injector-I 2 K superfluid helium cryogenic system. [J]. Nuclear Science and Techniques 31(4):39(2020) DOI: 10.1007/s41365-020-0742-8.
The Accelerator-Driven Sub-critical System (ADS) is a strategic plan to solve the nuclear waste problem for nuclear power plants in China. High-energy particle accelerators and colliders contain long strings of superconducting devices, superconducting radio frequency (SRF) cavities, and magnets, which may require cooling by 2 K superfluid helium (Helium II). 2 K superfluid helium cryogenic system has become a research hotspot in the field of superconducting accelerators. In this study, the ADS Injector-I 2 K cryogenic system is examined in detail. The cryogenic system scheme design, key equipment, and technology design, such as the 2 K Joule–Thomson (J-T) heat exchanger and cryomodules CM1+CM2 design, are examined, in addition to the commissioning and operation of the cryogenic system. The ADS Injector-I 2 K cryogenic system is the first 100 W superfluid helium system designed and built independently in China. The ADS Proton Beam reached 10 MeV at 10 mA in July 2016 and 10 MeV at 2 mA in continuous mode in January 2017, and has been operated reliably for over 15000 h, proving that the design of ADS InjectorI 2 K cryogenic system, the key equipment, and technology research are reasonable, reliable, and meet the requirements. The research into key technologies provides valuable engineering experience that can be helpful for future projects such as CI-ADS (China Initiative Accelerator-Driven System), SHINE (Shanghai HIgh repetitioN rate XFEL and Extreme light facility), PAPS (Platform of Advanced Photon Source Technology), and CEPC (Circular Electron-Positron Collider), thereby developing national expertise in the field of superfluid helium cryogenic systems.
ADSSuperfluid heliumCryogenic systemCryomoduleJ-T heat exchanger
C. Meng, S.C. Wang, J.S. Cao, et al., Beam commissioning of C-ADS injector-I RFQ accelerator. Proceedings of IPAC2015, USA, THPF057 (2015). (https://doi.org/10.18429/JACoW-IPAC2015-THPF057https://doi.org/10.18429/JACoW-IPAC2015-THPF057)
F. Yan, H. Geng, C. Meng, et al., Commissioning and operation experience with the China ADS injector-I CW linac. arXiv preprint arXiv:1705.05068 (2017). (https://arxiv.org/abs/1705.05068https://arxiv.org/abs/1705.05068)
L.R. Evans, The Large Hadron Collider, Proceedings of IPAC1995, Dallas (1995). (https://doi.org/10.1109/PAC.1995.504562https://doi.org/10.1109/PAC.1995.504562)
P. Lebrun, Superfluid helium cryogenics for the Large Hadron Collider project at CERN, Cryogenics, 34, 1-8 (1994). (https://doi.org/10.1016/S0011-2275(05)80003-7https://doi.org/10.1016/S0011-2275(05)80003-7)
P. Lebrun, L. Tavian, G. Claudet, Development of large-Capacity Refrigeration at 1.8 K for the Large Hadron Collider at CERN. No. LHC-Project-Report-6 (1996). (https://cds.cern.ch/record/304763/files/lhc-project-report-6.pdfhttps://cds.cern.ch/record/304763/files/lhc-project-report-6.pdf)
H. Weise, The TTF/VUV-FEL (FLASH) as the prototype for the European XFEL project. Proceedings LINAC, JACOW, 486-490 (2006). (http://accelconf.web.cern.ch/AccelConf/l06/PAPERS/WE1003.PDFhttp://accelconf.web.cern.ch/AccelConf/l06/PAPERS/WE1003.PDF)
Y. Bozhko, H. Lierl, B. Petersen, et al., Requirements for the cryogenic supply of the european XFEL project at DESY. AIP Conference Proceedings, 1620-1627 (2006). (https://doi.org/10.1063/1.2202588https://doi.org/10.1063/1.2202588)
S. Wolff, The cryogenic system of Tesla. DESY-TESLA-2001-39, CM-P00040972 (2001). (https://cds.cern.ch/record/558205/files/CM-P00040972.pdf)https://cds.cern.ch/record/558205/files/CM-P00040972.pdf)
J. Yoshida, K. Hosoyama, H. Nakai, et al., Development of STF cryogenic system in KEK. IEEE Particle Accelerator Conference (PAC), 2701-2703 (2007). (https://doi.org/10.1109/PAC.2007.4440357https://doi.org/10.1109/PAC.2007.4440357)
H. Nakai, K. Hara, T. Honma, et al., Superfluid helium cryogenic systems for superconducting RF cavities at KEK. AIP Conference Proceedings, 1349-1356 (2014). (https://doi.org/10.1063/1.4860863https://doi.org/10.1063/1.4860863)
S. Sakanaka, M. Adachi, S. Adachi, et al., Construction and commissioning of compact-ERL Injector at KEK. Proc. ERL2013, Novosibirsk, Russia (2013). (http://accelconf.web.cern.ch/Accelconf/ERL2013/papers/wg102.pdfhttp://accelconf.web.cern.ch/Accelconf/ERL2013/papers/wg102.pdf)
C. H. Rode, Jefferson lab 12 GeV CEBAF upgrade. AIP Conference Proceeding, 26-33 (2010). (https://doi.org/10.1063/1.3422362https://doi.org/10.1063/1.3422362)
X. Ting, F. Casagrande, V. Ganni, et al., Status of cryogenic system for spallation neutron source's superconducting radiofrequency test facility at Oak Ridge National Lab. AIP Conference Proceedings, 1085-1091 (2012). (https://doi.org/10.1063/1.4707028https://doi.org/10.1063/1.4707028)
J.D. Fuerst, D. Horan, J. Kaluzny, et al., Tests of SRF deflecting cavities at 2 K. Proc. Int. Part. Accel. Conf, 2300-2302 (2012). (http://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/WEPPC041.PDFhttp://accelconf.web.cern.ch/AccelConf/IPAC2012/papers/WEPPC041.PDF)
D. Andrew, K. Joshua, K. Arkadiy, Thermodynamic analyses of the LCLS-II cryogenic distribution system. IEEE Transactions on Applied Superconductivity, 27, 1-4 (2016). (https://doi.org/10.1109/TASC.2016.2646478https://doi.org/10.1109/TASC.2016.2646478)
L. Matthias, S. Belomestnykh, E. Chojnacki, et al., SRF Experience with the Cornell High-Current ERL Injector Prototype. Proceedings of PAC, Vancouver (2009). (http://inspirehep.net/record/1378347/files/tu3rai01.pdfhttp://inspirehep.net/record/1378347/files/tu3rai01.pdf)
V. Ganni, P. Knudsen, D. Arenius, Application of JLab 12 GeV helium refrigeration system for the FRIB accelerator at MSU. AIP Conference Proceedings, 323-328 (2014). (https://doi.org/10.1063/1.4860718https://doi.org/10.1063/1.4860718)
C. Zhang, BEPC II: construction and commissioning. Chinese Physics C, 33, 60-64 (2009). (https://doi.org/10.1109/PAC.1999.795760https://doi.org/10.1109/PAC.1999.795760)
S.P. Li, K. He, M.J. Sang, et al., Technology of Helium gas purification in BEPC-Ⅱ cryogenic system. Cryogenics, 3, 16-20 (2007). (https://doi.org/10.1002/jrs.1570https://doi.org/10.1002/jrs.1570)
S. P. Li, R. Ge, Z. Zhang, et al., Overall Design of the ADS Injector I Cryogenic System in China. Physics Procedia, 67, 863-867 (2015). (https://doi.org/10.1016/j.phpro.2015.06.145https://doi.org/10.1016/j.phpro.2015.06.145)
R.J. Wu, Y. Shao, J.P. Dai, et al., Experimental study on failure compensation of superconducting cavity in C-ADS injector I. Nucl. Tech., 42, 040502 (2019). (in Chinese) (https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040502https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040502)
J.H. Yue, P.H. Liu, J.S. Cao, et al., Beam phase and energy measurement system of ADS injector I. Nuclear Techniques, 41, 020403 (2018) (in Chinese). (https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020403https://doi.org/10.11889/j.0253-3219.2018.hjs.41.020403)
G.P. Wang, J. Xiao, K.H , et al., Conceptual design of cryogenic system for China spallation neutron source. Cryogenics, 5, 27-30 (2009). (https://doi.org/10.3969/j.issn.1000-6516.2009.05.007https://doi.org/10.3969/j.issn.1000-6516.2009.05.007)
G. P. Wang, Y. Zhang, J. Xiao, et al., Design progress of cryogenic hydrogen system for China Spallation Neutron Source. AIP Conference Proceedings, 1573, 1285-1290 (2014). (https://doi.org/10.1063/1.4860854https://doi.org/10.1063/1.4860854)
X.H. Guo, Y.N. Han, J. Tao, et al., Cryogenic System for the ADS Injector II in IMP, CAS. Proceedings of LINAC2012, Tel-Aviv, TUPB044 (2013). (http://ir.ihep.ac.cn/handle/311005/253205http://ir.ihep.ac.cn/handle/311005/253205)
J. Cui, J.P. Xu, W. Li, et al., Development of a cryogenic calorimeter for investigating beam-based heat load of superconducting undulators. IEEE Transactions on Applied Superconductivity, 24, 1-4 (2014). (https://doi.org/10.1109/tasc.2013.2293337https://doi.org/10.1109/tasc.2013.2293337)
Z.W. Zhou, M. Zhuang, X.F. Lu, Design of a real-time fault diagnosis expert system for the EAST cryoplant. Fusion Engineering and Design, 87, 2002-2006 (2012). (https://doi.org/10.1016/j.fusengdes.2012.04.016https://doi.org/10.1016/j.fusengdes.2012.04.016)
B.C. Jiang, H.T. Hou, Simulation of longitudinal beam dynamics with the third harmonic cavity for SSRF Phase II Project, Proceedings of SAP2014, Lanzhou, THPMH4 (2015). (http://epaper.kek.jp/SAP2014/papers/thpmh4.pdfhttp://epaper.kek.jp/SAP2014/papers/thpmh4.pdf)
X.F. Niu, F. Bai, X.J. Wang, et al., Cryogenic system design for HIAF iLinac. Nuclear Science and Techniques, 30, 178 (2019). (https://doi.org/10.1007/s41365-019-0700-5https://doi.org/10.1007/s41365-019-0700-5)
CEPC Study Group, CEPC conceptual design report. arXiv preprint arXiv:1809.00285 (2018). (https://arxiv.org/abs/1809.00285https://arxiv.org/abs/1809.00285)
R. Ge, S.P. Li, The key technology research for the ADS InjectorⅠ2 K cryogenic system. Institute of High Energy Physics, Chinese Academy of Sciences, Doctoral Dissertation (2015). (http://ir.ihep.ac.cn/handle/311005/211330http://ir.ihep.ac.cn/handle/311005/211330)
A. Romanenko, A. Grassellino, O. Melnychuk, et al., Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around Tc. Journal of Applied Physics, 115, 184903 (2014). (https://doi.org/10.1063/1.4875655https://doi.org/10.1063/1.4875655)
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution