1.Chengdu University of Technology, Chengdu 610059, China
2.Sichuan University of Science & Engineering, Zigong 643000, China
3.Beijing Institute of Radiation Medicine, Beijing 100850, China
Corresponding author, wl@cdut.edu.cn
Scan for full text
Ting Zhang, Lei Wang, Jing Ning, et al. Simulation of an imaging system for internal contamination of lungs using MPA-MURA coded aperture collimator. [J]. Nuclear Science and Techniques 32(2):17(2021)
Ting Zhang, Lei Wang, Jing Ning, et al. Simulation of an imaging system for internal contamination of lungs using MPA-MURA coded aperture collimator. [J]. Nuclear Science and Techniques 32(2):17(2021) DOI: 10.1007/s41365-021-00849-3.
The nuclides inhaled during nuclear accidents usually cause internal contamination of the lungs with low activity. Although a parallel-hole imaging system, which is widely used in medical gamma cameras, has a high resolution and good image quality, owing to its extremely low detection efficiency, it remains difficult to obtain images of inhaled lung contamination. In this study, the Monte Carlo method was used to study the internal lung contamination imaging using the MPA-MURA coded-aperture collimator. The imaging system consisted of an adult male lung model, with a mosaicked, pattern-centered, and anti-symmetric MURA coded-aperture collimator model and a CsI(Tl) detector model. The MLEM decoding algorithm was used to reconstruct the internal contamination image, and the complementary imaging method was used to reduce the number of artifacts. The full width at half maximum of the I-131 point source image reconstructed by the MPA-MURA coded-aperture imaging reached 2.51 mm, and the signal-to-noise ratio of the simplified respiratory tract source (I-131) image reconstructed through MPA-MURA coded-aperture imaging was 3.98 dB. Although the spatial resolution of MPA-MURA coded aperture imaging is not as good as that of parallel-hole imaging, the detection efficiency of PMA-MURA coded-aperture imaging is two orders of magnitude higher than that of parallel hole collimator imaging. Considering the low activity level of internal lung contamination caused by nuclear accidents, PMA-MURA coded-aperture imaging has significant potential for the development of lung contamination imaging.
Lung internal contaminationMPA-MURAMonte CarloMLEMSpatial resolutionDetection efficiency
F.L. Zhang, D.C. Qu, G.S. Yang, Progress of internal radiation monitoring technology. China Radiation Health.26, 1 (2007) (in Chinese). http://dx.chinadoi.cn/10.3969/j.issn.1004-714X.2007.01.067
S.S. Ning, Dispersion and radiation dose of airborne radionuclides typical of Fukushima nuclear accident. Shanghai Jiao Tong University. 1(2013)(in Chinese). http://d.wanfangdata.com.cn/thesis/D545481
R. Querfeld, AE. Pasi, K, Shozugawa, K et al., Radionuclides in surface waters around the damaged Fukushima Daiichi NPP one month after the accident: Evidence of significant tritium release into the environment. Sci. Total. Environ. 689, 451-456(2019). doi: 10.1016/j.scitotenv.2019.06.362http://doi.org/10.1016/j.scitotenv.2019.06.362
J.W. Scuffham, M. Yip-Braidley, A.L. Shutt et al., Adapting clinical gamma cameras for body monitoring in the event of a large-scale radiological incident. J. Radiol. Prot. 36,363-381(2016). https://iopscience.iop.org/article/10.1088/0952-4746/36/2/363/meta
M.J. Youngman, Review of methods to measure internal contamination in an emergency. J. Radiol. Prot. 35, 1(2015). doi: 10.1088/0952-4746/35/2/R1http://doi.org/10.1088/0952-4746/35/2/R1
H. Masahiro, T. Shinji, A. Suminori, et al., Estimation of internal exposure of the thyroid to (131)I on the basis of (134)Cs accumulated in the body among evacuees of the Fukushima Daiichi Nuclear Power Station accident. Environ. Int. 61, 73-76 (2013). doi: 10.1016/j.envint.2013.09.013http://doi.org/10.1016/j.envint.2013.09.013
L. Wang, Key techniques for rapid field assessment of lung gamma radiation intra-site contamination. Chengdu University of Technology. 1-3(2013) (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10616-1013263633.htm
W. Lu, Imaging simulation of pulmonary contamination. Chengdu University of Technology. 32 (2018) (in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10616-1018258592.htm
M. Bernhardt, F. Wyrowski, O. Bryngdahl, Coding and binarization in digital Fresnel holography. Opt. Commun. 77, 4-8(1990). doi: 10.1016/0030-4018(90)90450-8http://doi.org/10.1016/0030-4018(90)90450-8
J.G. Ables, Fourier transform photography: a new method for X-ray astronomy. Japn. J. Appl. Phys. 1,172-173(1968). doi: 10.1017/S1323358000011292http://doi.org/10.1017/S1323358000011292
M. Liu, Modular Readout Circuit Research and System Integration Scheme Design for Small High Resolution Radiation Imaging System. Dissertation, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 7-20(2010) (in Chinese). http://libsvr.sinap.ac.cn:8080/handle/331007/7463
S.R. Gottesmen, E.E. Fenimore, New family of binary arrays for coded aperture imaging. Applied Optics. 20, 4344-4352 (1989). doi: 10.1364/AO.28.004344http://doi.org/10.1364/AO.28.004344
R. Accorsi, R.C. Lanza, Near-field artifact reduction in planar coded aperture imaging. Applied Optics. 40(26), 4697-4705 (2001). doi: 10.1364/AO.40.004697http://doi.org/10.1364/AO.40.004697
J.J. Hong. Design of Coded Aperture Collimator in Camera and Digital Image Reconstruction. Huazhong University of Science and Technology, 7-39 (2006) (in Chinese). http://d.wanfangdata.com.cn/thesis/D045032
C.L. Zhao, L.H. Chen, Y.P. Li, Decoding method of the MURA-coded radiation imaging system. Nuclear Techniques. 37, 080401 (2014)(in Chinese). https://10.11889/j.0253-3219.2014.hjs.37.080401
H.P. Li, F. Wang, X.Y. Ai, Algorithm optimization of MLEM in coded aperture imaging system. Nucl. Tech. 40, 020404 (2017). doi: 10.11889/j.0253-3219.2017.hjs.40.020404http://doi.org/10.11889/j.0253-3219.2017.hjs.40.020404.
S. Xiao, M.C. Lan, X.J. Dang, et al., Numerical reconstruction of γ-source distribution in MARA coded hole imaging. Nuclear Electronics and Detection Technology. 33, 1-5 (2013)(in Chinese). http://dx.chinadoi.cn/10.3969/j.issn.0258-0934.2013.08.001
L.H. Chen, H. Li, Y.P. LI, et al., Design of nuclear imaging system based on MURA coded aperture collimator. Nuclear Techniques, 36, 1-4 (2013) (in Chinese). http://d.wanfangdata.com.cn/periodical/hjs201308012
M.L. McConnell, D.J. Forrest, E.L. Chupp et al., A coded aperture gamma ray telescope. IEEE T Nucl. Sci. 29, 155-159 (1982). doi: 10.1109/TNS.1982.4335818http://doi.org/10.1109/TNS.1982.4335818
P.P. Dunphy, M.L. McConnell, A. Owens et al., A balloon-borne coded aperture telescope for low-energy gamma-ray astronomy. Nucl. Instrum. Meth. A. 274, 362-379 (1989). doi: 10.1016/0168-9002(89)90403-8http://doi.org/10.1016/0168-9002(89)90403-8
U.B. Jayanthi, J. Braga, Physical implementation of an anti-mask in URA based coded mask systems. Nucl Instrum Meth A, 310, 685-689 (1991). doi: 10.1016/0168-9002(91)91118-Fhttp://doi.org/10.1016/0168-9002(91)91118-F
R. Accorsi, F. Gasparini, R.C. Lanza, Optimal coded aperture patterns for improved SNR in nuclear medicine imaging. Nucl. Instrum. Meth. A, 474, 273-284 (2001). doi: 10.1016/S0168-9002(01)01326-2http://doi.org/10.1016/S0168-9002(01)01326-2
Y.G. Sun, Photon-counting multienergetic spectral CT simulation study based on Geant4 Monte Carlo platform. North Central University. 11-16(2018). http://cdmd.cnki.com.cn/Article/CDMD-10110-1018221876.htm
J.S. Benoit, D. Becheva, E. Carlier et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56, 882-884 (2011). doi: 10.1088/0031-9155/56/4/001http://doi.org/10.1088/0031-9155/56/4/001
S. Stute, T. Carlier, K. Cristina et al., Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images. Phys. Med. Bio. 56, 41-57 (2011). doi: 10.1088/0031-9155/56/19/017http://doi.org/10.1088/0031-9155/56/19/017
Y.J. Lee, A.C. Lee, H.J. Kim et al., A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector. Nucl. Instrum. Meth. A, 830, 381-390 (2016). doi: 10.1016/j.nima.2016.06.024http://doi.org/10.1016/j.nima.2016.06.024
I. Buvat, D. Lazaro, Monte Carlo simulations in emission tomography and GATE: An overview. Nucl. Instrum. Meth. A, 569, 323-329 (2006). doi: 10.1016/j.nima.2006.08.039http://doi.org/10.1016/j.nima.2006.08.039
S.W. Lee, Y.J. Lee, Feasibility of gamma camera system with CdWO4 detector for quantitation of yttrium-90 bremsstrahlung imaging: Monte Carlo simulation study. Optik. 127, 11807-11815(2016). doi: 10.1016/j.ijleo.2016.09.090http://doi.org/10.1016/j.ijleo.2016.09.090
S.S. Jan, G. Strul, D. Staelens, et al., GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49, 43-61 (2004). doi: 10.1088/0031-9155/49/19/007http://doi.org/10.1088/0031-9155/49/19/007
R. Accorsi. Desigen of Near-Field Coded Aperture Cameras for High-Resolution Medical and Industrial Gamma-Ray Imaging, Ph D thesis, Massachusetts Institute of Technology 143-144(2001). http://dspace.mit.edu/handle/1721.1/8684
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution