Yu Zhang, Wen-Cheng Fang, Xiao-Xia Huang, et al. Design, fabrication, and cold test of S-band high-gradient accelerating structure for compact proton therapy facility. [J]. Nuclear Science and Techniques 32(4):38(2021)
DOI:
Yu Zhang, Wen-Cheng Fang, Xiao-Xia Huang, et al. Design, fabrication, and cold test of S-band high-gradient accelerating structure for compact proton therapy facility. [J]. Nuclear Science and Techniques 32(4):38(2021) DOI: 10.1007/s41365-021-00869-z.
Design, fabrication, and cold test of S-band high-gradient accelerating structure for compact proton therapy facility
摘要
Abstract
An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator (linac) to accommodate the new development of compact, single-room facilities and ultra-high dose rate (FLASH) radiotherapy. To optimize the design, an efficient optimization scheme is applied to improve the simulation efficiency. An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38, which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV, as a high gradient up to 50 MV/m is required. A special design involving a dual-feed coupler eliminates the dipole field effect. This paper presents all the details pertaining to the design, fabrication, and cold test results of the S-band high-gradient accelerating structure.
R. R. Wilson, Radiological use of fast protons. Radiology 47, 487-491 (1946). doi: 10.1148/47.5.487http://doi.org/10.1148/47.5.487
R.C. Han, Y.J. Li, Y.H. Pu, Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy. Nucl. Sci. Tech. 31, 13 (2020). doi: 10.1007/s41365-020-0722-zhttp://doi.org/10.1007/s41365-020-0722-z
Particle Therapy Cooperative Group (PTCOG) Collaboration, http://www.ptcog.comhttp://www.ptcog.com.
Quality control and commissioning of proton therapy system. (Book)
P. Montay-Gruel, A. Bouchet, M. Jaccard et al., X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology 129, 582-588 (2018). doi: 10.1016/j.radonc.2018.08.016http://doi.org/10.1016/j.radonc.2018.08.016
R. W. Hamm, K. R. Crandall, J. M. Potter, Preliminary design of a dedicated proton therapy linac. Conference Record of the 1991 IEEE Particle Accelerator Conference, San Francisco, CA, USA 2583-2585 (1991). DOI: 10.1109/PAC.1991.165037http://doi.org/10.1109/PAC.1991.165037.
Arlene J. Lennox, Hospital-based proton linear accelerator for particle therapy and radioisotope production. Nuclear Instruments and Methods in Physics Research A (1991) 1197-1200. doi: 10.1016/0168-583X(91)95130-6http://doi.org/10.1016/0168-583X(91)95130-6
U. Amaldi, P. Berra, K. Crandall et al., LIBO - a linac - booster for proton therapy: construction and test of a prototype. Nuclear Instruments and Methods in Physics Research A 521 (2004) 512-529. doi: 10.1016/j.nima.2003.07.062http://doi.org/10.1016/j.nima.2003.07.062
C. Ronsivalle, A. Ampollini, G. Bazzano et al., The TOP IMPLART LINAC: Machine status and experimental activity. Proceedings of IPAC2017. DOI: 10.18429/JACoW-IPAC2017-THPVA090http://doi.org/10.18429/JACoW-IPAC2017-THPVA090.
S. Benedetti, A. Grudiev, A. Latina, High gradient linac for proton therapy, Phys. Rev. Accel. Beams, 20, 040101 (2017). doi: 10.1103/PhysRevAccelBeams.20.040101http://doi.org/10.1103/PhysRevAccelBeams.20.040101
H.Y. Li, X.M. Wan, W. Chen et al., Optimization of the S-band side-coupled cavities for proton acceleration. Nucl. Sci. Tech. 31, 23 (2020). doi: 10.1007/s41365-020-0735-7http://doi.org/10.1007/s41365-020-0735-7
X.X. Huang, W.C. Fang, Q. Gu et al., Design of an X-band accelerating structure using a newly developed structural optimization procedure. Nuclear Instruments and Methods in Physics Research A 834, 45-52 (2017). doi: 10.1016/j.nima.2017.02.050http://doi.org/10.1016/j.nima.2017.02.050
A. Degiovanni, R. Bonomi, M. Garlasché et al., High gradient rf test results of S-band and C-band cavities for medical linear accelerators. Nuclear Instruments and Methods in Physics Research A 890,1-7 (2018). doi: 10.1016/j.nima.2018.01.079http://doi.org/10.1016/j.nima.2018.01.079
A. Degiovanni, High gradient proton linacs for medical applications, Ph.D. thesis, EPFL, (2014). DOI: 10.5075/epfl-thesis-6069http://doi.org/10.5075/epfl-thesis-6069
A. Degiovanni, U. Amaldi, R. Bonomi et al., TERA high gradient test program of rf cavities for medical linear accelerators, Nuclear Instruments and Methods in Physics Research A 657, 55-58 (2011). doi: 10.1016/j.nima.2011.05.014http://doi.org/10.1016/j.nima.2011.05.014
S. Benedetti, A. Ugo, D. Alberto et al., RF design of a novel S-band backward traveling wave linac for proton therapy. Proceeding of 27th Linear Accelerator Conference, Geneva, Switzerland. THPP061 (2014). http://cds.cern.ch/record/2062620.http://cds.cern.ch/record/2062620.
S. Benedetti, Theodoros Argyropoulos, Cesar Blanch Gutiérrez et al., Fabrication and testing of a novel S-band backward traveling wave accelerating structure for proton therapy linacs. Proceedings of the 28th Linear Accelerator Conference, East Lansing, MI, USA, (2016). DOI: 10.18429/JACoW-LINAC2016-MOPLR048http://doi.org/10.18429/JACoW-LINAC2016-MOPLR048
Y. Nour, T. Abuelfadl. Design of X-band medical linear accelerator with multiple RF feeds and RF phase focusing. Proceedings of IPAC2013, Shanghai, China (2013). https://accelconf.web.cern.ch/IPAC2013/papers/thpwa001.pdfhttps://accelconf.web.cern.ch/IPAC2013/papers/thpwa001.pdf
Paul-Francois Rene Gapais, Bead-Pull measurements techniques and Multipoles components of DQW crab-cavity. CERN Summer Student 2018 Report. CERN-STUDENTS-Note-2018-144 https://cds.cern.ch/record/2638938https://cds.cern.ch/record/2638938