1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
zhubl@mail.ustc.edu.cn
sihui@ustc.edu.cn
ywang@ustc.edu.cn
Scan for full text
Bang-Le Zhu, Xiao-Qin Ge, Si-Hui Wang, et al. Activation and pumping characteristics of Ti-Zr-V films deposited on narrow tubes. [J]. Nuclear Science and Techniques 32(5):50(2021)
Bang-Le Zhu, Xiao-Qin Ge, Si-Hui Wang, et al. Activation and pumping characteristics of Ti-Zr-V films deposited on narrow tubes. [J]. Nuclear Science and Techniques 32(5):50(2021) DOI: 10.1007/s41365-021-00880-4.
Non-evaporable getter (NEG) films are an integral part of many particle accelerators. These films provide conductance-free evenly distributed pumping, a low thermal outgassing rate, and a low photon-and electron-stimulated desorption. These characteristics make it an ideal solution for resolving the non-uniform pressure distribution in conductance-limited narrow vacuum tubes. In this study, ternary Ti-Zr-V films were deposited on Si substrates and Ag-Cu (Ag 0.085 wt%) tubes with an inner diameter of 22 mm. All Ti-Zr-V films were prepared from an alloy target using the same DC magnetron sputtering parameters. The compositions and corresponding chemical bonding states were analyzed by X-ray photoelectron spectroscopy after activation at different temperatures. The test particle Monte Carlo (TPMC) method was used to measure the sticking probability of the Ti–Zr–V film based on pressure readings during gas injection. The results indicate that activation commences at temperatures as low as 150 °C and Ti,0, Zr,0, and V,0, exist on the surface after annealing at 180 °C for 1 h. Ti-Zr-V films can be fully activated at 180 °C for 24 h. The CO sticking probability reaches 0.15, with a pumping capacity of 1 monolayer.
Non-evaporable getter (NEG)Accelerator vacuumTPMCActivation temperature
Z.B. Sun, L. Shang, F.L. Shang et al., Simulation study of longitudinal injection scheme for HALS with a higher harmonic cavity system, Nucl. Sci. Tech. 30,113 (2019). doi: 10.1007/s41365-019-0627-xhttp://doi.org/10.1007/s41365-019-0627-x
D.C. Zhu, J.H. Yue, Y.F. Sui et al., Performance of beam size monitor based on Kirkpatrick-Baez mirror at SSRF, Nucl. Sci. Tech. 29, 148 (2018). doi: 10.1007/s41365-018-0477-yhttp://doi.org/10.1007/s41365-018-0477-y
P. He, Accelerator vacuum technology challenges for next generation synchrotron-light sources. In Proceedings of the 8th International Particle Accelerator Conference, IPAC2017, Copenhagen, Denmark, 2017, pp. 4830-4835. doi: 10.18429/JACoW-IPAC2017-FRXAB1http://doi.org/10.18429/JACoW-IPAC2017-FRXAB1
V.V. Anashin, I.R. Collins, R.V. Dostovalov et al., Comparative study of photodesorption from TiZrV coated and uncoated stainless steel vacuum chambers. Vacuum 75, 155-159 (2004). doi: 10.1016/j.vacuum.2004.01.080http://doi.org/10.1016/j.vacuum.2004.01.080
O.B. Malyshev, A.P. Smith, R. Valizadeh et al., Electron stimulated desorption from bare and nonevaporable getter coated stainless steels. J. Vac. Sci. Technol. A 28, 1215-1225 (2010). doi: 10.1116/1.3478672http://doi.org/10.1116/1.3478672
C. Benvenuti, P. Chiggiato, P.C. Pinto, et al., Vacuum properties of TiZrV non-evaporable getter films. Vacuum 60, 57-65 (2001). doi: 10.1016/S0042-207X(00)00246-3http://doi.org/10.1016/S0042-207X(00)00246-3
C. Benvenuti, Non-evaporable getters: From pumping strips to thin film coatings. In: 6th European Particle Accelerator Conference, EPAC1998, Stockholm, Sweden, 1998, pp. 200-204 https://accelconf.web.cern.ch/e98/PAPERS/THZ02A.PDFhttps://accelconf.web.cern.ch/e98/PAPERS/THZ02A.PDF
C. Benvenuti, P. Chiggiato, A. Mongelluzzo, et al., Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V nonevaporable getter films. J. Vac. Sci. Technol. A 19, 2925-2930 (2001). doi: 10.1116/1.1414122http://doi.org/10.1116/1.1414122
E. Al-Dmour, M.J. Grabski, The vacuum system of MAX 4 storage rings: Installation and conditioning. In: Proceedings of the 8th International Particle Accelerator Conference, IPAC2017,Copenhagen, Denmark, 2017, pp. 3468-3470 doi: 10.18429/JACoW-IPAC2017-WEPVA09http://doi.org/10.18429/JACoW-IPAC2017-WEPVA09
J.M. Jimenez, LHC: The world’s largest vacuum systems being operated at CERN. Vacuum 84, 2-7 (2009). doi: 10.1016/j.vacuum.2009.05.015http://doi.org/10.1016/j.vacuum.2009.05.015
C. Herbeaux, N. Bèchu, A. Conte et al., Vacuum conditioning of the SOLEIL storage ring with extensive use of NEG coating. In: 11th European Particle Accelerator Conference, EPAC2008, Genoa, Italy, 2008, pp. 3696-3698. https://accelconf.web.cern.ch/e08/papers/thpp142.pdfhttps://accelconf.web.cern.ch/e08/papers/thpp142.pdf
O.B. Malyshev, M.P. Cox, Design modelling and measured performance of the vacuum system of the Diamond Light Source storage ring. Vacuum 86, 1692-1696 (2012). doi: 10.1016/j.vacuum.2012.03.015.http://doi.org/10.1016/j.vacuum.2012.03.015.
M. Hahn, Operational experience and relation to deposition process for NEG-coated chambers installed on the ESRF electron storage ring, Vacuum 81, 759-761 (2007). doi: 10.1016/j.vacuum.2005.11.051http://doi.org/10.1016/j.vacuum.2005.11.051
O. B. Malyshev, Vacuum in Particle Accelerators: Modelling, Design and Operation of Beam Vacuum Systems. (John Wiley & Sons, 2020).
Z. Abboud and O. Moutanabbir, Temperature-Dependent in Situ Studies of Volatile Molecule Trapping in Low-Temperature-Activated Zr Alloy-Based Getters. J. Phys. Chem. C 121, 3381-3396 (2017). doi: 10.1021/acs.jpcc.6b11426http://doi.org/10.1021/acs.jpcc.6b11426
A. E. Prodromides, C. Scheuerlein and M. Taborelli, Lowering the activation temperature of TiZrV non-evaporable getter films. Vacuum 60, 35-41 (2001). doi: 10.1016/S0042-207X(00)00243-8http://doi.org/10.1016/S0042-207X(00)00243-8
C. Benvenuti, J. M. Cazeneuve, P. Chiggiato, et al., A novel route to extreme vacua: the non-evaporable getter thin film coatings. Vacuum 53, 219-225 (1999). doi: 10.1016/S0042-207X(98)00377-7http://doi.org/10.1016/S0042-207X(98)00377-7
O. B. Malyshev and K. J. Middleman, Test Particle Monte-Carlo modelling of installations for NEG film pumping properties evaluation. Vacuum 83, 976-979 (2009). doi: 10.1016/j.vacuum.2008.11.008http://doi.org/10.1016/j.vacuum.2008.11.008
R. Kersevan and J. L. Pons, Introduction to MOLFLOW+: New graphical processing unit-based Monte Carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment. J. Vac. Sci. Technol. A 27, 1017-1023(2009). doi: 10.1116/1.3153280http://doi.org/10.1116/1.3153280
O. B. Malyshev, K. J. Middleman, J. S. Colligon, et al., Activation and measurement of nonevaporable getter films. J. Vac. Sci. Technol. A 27, 321-327 (2009). doi: 10.1116/1.3081969http://doi.org/10.1116/1.3081969
C. Sittig, M. Textor, N. D. Spencer, et al., Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J. Mater. Sci. Mater. Med. 10, 35-46 (1999). doi: 10.1023/A:1008840026907http://doi.org/10.1023/A:1008840026907
C. J. Nelin, P. S. Bagus, M. A. Brown, et al., Analysis of the Broadening of X-ray Photoelectron Spectroscopy Peaks for Ionic Crystals. Angew. Chem. Int. Ed. 50, 10174-10177 (2011). doi: 10.1002/anie.201100964http://doi.org/10.1002/anie.201100964
G. Lu, S. L. Bernasek, J. Schwartz, Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science 458, 80-90 (2000). doi: 10.1016/S0039-6028(00)00420-9http://doi.org/10.1016/S0039-6028(00)00420-9
S.H. Wang, Z.W. Wang, X. Shu et al., Activation characterization of the Ti-Zr-V getter films deposited by magnetron sputtering. Appl. Surf. Sci. 528, 147059 (2020). doi: 10.1016/j.apsusc.2020.147059http://doi.org/10.1016/j.apsusc.2020.147059
I. Fongkaew, R. Akrobetu, A. Sehirlioglu et al., Core-level binding energy shifts as a tool to study surface processes on LaAlO3/SrTiO3 J. Electron. Spectrosc. Relat. Phenom. 218, 21-29 (2017). doi: 10.1016/j.elspec.2017.05.009http://doi.org/10.1016/j.elspec.2017.05.009
M. C. Biesinger, L. W. M. Lau, A. R. Gerson et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887-898 (2010). doi: 10.1016/j.apsusc.2010.07.086http://doi.org/10.1016/j.apsusc.2010.07.086
J. Zemek, P. Jiricek, XPS and He II photoelectron yield study of the activation process in Ti-Zr NEG films. Vacuum 71, 329-333 (2003). doi: 10.1016/S0042-207X(02)00760-1http://doi.org/10.1016/S0042-207X(02)00760-1
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution