1.School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
2.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
3.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4.School of Physics and Technology, Wuhan University, Wuhan 430072, China
zhangym26@mail.sysu.edu.cn
luowm@ihep.ac.cn
youzhy5@mail.sysu.edu.cn
Scan for full text
Zi-Yuan Li, Yu-Mei Zhang, Guo-Fu Cao, et al. Event vertex and time reconstruction in large volume liquid scintillator detectors. [J]. Nuclear Science and Techniques 32(5):49(2021)
Zi-Yuan Li, Yu-Mei Zhang, Guo-Fu Cao, et al. Event vertex and time reconstruction in large volume liquid scintillator detectors. [J]. Nuclear Science and Techniques 32(5):49(2021) DOI: 10.1007/s41365-021-00885-z.
Large-volume liquid scintillator detectors with ultra-low background levels have been widely used to study neutrino physics and search for dark matter. Event vertex and event time are not only useful for event selection but also essential for the reconstruction of event energy. In this study, four event vertex and event time reconstruction algorithms using charge and time information collected by photomultiplier tubes were analyzed comprehensively. The effects of photomultiplier tube properties were also investigated. The results indicate that the transit time spread is the main effect degrading the vertex reconstruction, while the effect of dark noise is limited. In addition, when the event is close to the detector boundary, the charge information provides better performance for vertex reconstruction than the time information.
JUNOLiquid scintillator detectorNeutrino experimentVertex reconstructionTime reconstruction
KamLAND Collaboration, First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance. Phys. Rev. Lett. 90, 021802 (2003). doi: 10.1103/PhysRevLett.90.021802http://doi.org/10.1103/PhysRevLett.90.021802
BOREXINO Collaboration, Neutrinos from the primary proton-proton fusion process in the sun. Nature 512, 383-386 (2014). doi: 10.1038/nature13702http://doi.org/10.1038/nature13702
DOUBLE CHOOZ Collaboration, Indication of reactor disappearance in the Double CHOOZ experiment. Phys. Rev. Lett. 108, 131801 (2012). doi: 10.1103/PhysRevLett.108.131801http://doi.org/10.1103/PhysRevLett.108.131801
DAYA BAY Collaboration, Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). doi: 10.1103/PhysRevLett.108.171803http://doi.org/10.1103/PhysRevLett.108.171803
RENO Collaboration, Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012). doi: 10.1103/PhysRevLett.108.191802http://doi.org/10.1103/PhysRevLett.108.191802
S.T. Petcov, M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments. Phys. Lett. B 533, 94-106 (2002). doi: 10.1016/S0370-2693(02)01591-5http://doi.org/10.1016/S0370-2693(02)01591-5
SNO+ Collaboration, Current status and future prospects of the SNO+ experiment. Adv. High Energy Phys. 2016, 6194250 (2016). doi: 10.1155/2016/6194250http://doi.org/10.1155/2016/6194250
JUNO Collaboration, Neutrino physics with JUNO. J. Phys. G 43, 030401 (2016). doi: 10.1088/0954-3899/43/3/030401http://doi.org/10.1088/0954-3899/43/3/030401
Q. Liu, M. He, X. Ding et al., A vertex reconstruction algorithm in the central detector of JUNO. JINST 13 (09), T09005 (2018). doi: 10.1088/1748-0221/13/09/t09005http://doi.org/10.1088/1748-0221/13/09/t09005
T. Lin, J.H. Zou, W.D. Li et al., The application of SNiPER to the JUNO simulation. J. Phys. Conf. Ser. 898, 042029 (2017). doi: 10.1088/1742-6596/898/4/042029http://doi.org/10.1088/1742-6596/898/4/042029
JUNO Collaboration, JUNO Conceptual Design Report. arXiv:1508.07166 [physics.ins-det].
Z.M. Wang, JUNO PMT system and prototyping. J. Phys. Conf. Ser. 888, 012052 (2017). doi: 10.1088/1742-6596/888/1/012052http://doi.org/10.1088/1742-6596/888/1/012052
G. Wang, Y.K. Heng, X.H. Li et al., Effect of divider current on 7.62 cm photomultiplier tube performance. Nuclear Techniques 41(8): 080402 (2018). doi: 10.11889/j.0253-3219.2018.hjs.41.080402http://doi.org/10.11889/j.0253-3219.2018.hjs.41.080402 (in Chinese)
K.J. Li, Z.Y. You, Y.M. Zhang et al., GDML based geometry management system for offline software in JUNO. Nucl. Instrum. Meth. A 908, 43-48 (2018). doi: 10.1016/j.nima.2018.08.008http://doi.org/10.1016/j.nima.2018.08.008
S. Zhang, J.S. Li, Y.J. Su et al., A method for sharing dynamic geometry information in studies on liquid-based detectors. Nucl. Sci. Tech. 32, 21 (2021). doi: 10.1007/s41365-021-00852-8http://doi.org/10.1007/s41365-021-00852-8
Y. Zhang, Z.Y. Yu, X.Y. Li et al., A complete optical model for liquid-scintillator detectors. Nucl. Instrum. Meth. A 967, 163860 (2020). doi: 10.1016/j.nima.2020.163860http://doi.org/10.1016/j.nima.2020.163860
Z.Y. You, K. Li, Y. Zhang et al., A ROOT-basedROOT based event display software for JUNO, JINST 13, T02002 (2018). doi: 10.1088/1748-0221/13/02/t02002http://doi.org/10.1088/1748-0221/13/02/t02002
J. Zhu, Z. You, Y. Zhang et al., A method of detector and event visualization with unity in JUNO. JINST 14 (01), T01007 (2019). doi: 10.1088/1748-0221/14/01/t01007http://doi.org/10.1088/1748-0221/14/01/t01007
M. Born et al., Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (7th ed.). Cambridge: Cambridge University Press., (1999).
X. Zhou, Q. Liu, M. Wurm et al., Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors. Rev. Sci. Instrum. 86, 073310 (2015). doi: 10.1063/1.4927458http://doi.org/10.1063/1.4927458
A.N. Bashkatov, E.A. Genina, Water refractive index in dependence on temperature and wavelength: a simple approximation. International Society for Optics and Photonics, SPIE, 5068, 393-395 (2003). doi: 10.1117/12.518857http://doi.org/10.1117/12.518857
F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1 (1994).
G. Ranucci, An analytical approach to the evaluation of the pulse shape discrimination properties of scintillators. Nucl. Instrum. Meth. A 354 (2), 389-399 (1995). doi: 10.1016/0168-9002(94)00886-8http://doi.org/10.1016/0168-9002(94)00886-8
C. Galbiati, K. McCarty, Time and space reconstruction in optical, non-imaging, scintillator-based particle detectors. Nucl. Instrum. Meth. A 568 (2), 700-709 (2006). doi: 10.1016/j.nima.2006.07.058http://doi.org/10.1016/j.nima.2006.07.058
M. Moszynski, B. Bengtson, Status of timing with plastic scintillation detectors. Nucl. Instrum. Meth. A 158, 1-31 (1979). doi: 10.1016/S0029-554X(79)90170-8http://doi.org/10.1016/S0029-554X(79)90170-8
W.L. Zhong, Z.H. Li, C.G. Yang et al., Measurement of decay time of liquid scintillator. Nucl. Instrum. Meth. A 587 (2), 300-303 (2008). doi: 10.1016/j.nima.2008.01.077http://doi.org/10.1016/j.nima.2008.01.077
T.M. Undagoitia, F. von Feilitzsch, L. Oberauer et al., Fluorescence decay-time constants in organic liquid scintillators. Rev. Sci. Instrum. 80 (4), 043301 (2009). doi: 10.1063/1.3112609http://doi.org/10.1063/1.3112609
H.M. O’Keeffe, E. O'Sullivan, M.C. Chen, Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment. Nucl. Instrum. Meth. A 640 (1), 119-122 (2011). doi: 10.1016/j.nima.2011.03.027http://doi.org/10.1016/j.nima.2011.03.027
H. Takiya, K. Abe, K. Hiraide et al., A measurement of the time profile of scintillation induced by low energy gamma-rays in liquid xenon with the XMASS-I detector. Nucl. Instrum. Meth. A 834, 192-196 (2016). doi: 10.1016/j.nima.2016.08.014http://doi.org/10.1016/j.nima.2016.08.014
O.J. Smirnov, Energy and Spatial Resolution of a Large-Volume Liquid-Scintillator Detector. Instrum. Exp. Tech. 46 (3), 327-344 (2003). doi: 10.1023/a:1024458203966http://doi.org/10.1023/a:1024458203966
R. Zhang, D.W. Cao, C.W Loh et al. Using monochromatic light to measure attenuation length of liquid scintillator solvent LAB. Nucl. Sci. Tech. 30, 30 (2019). doi: 10.1007/s41365-019-0542-1http://doi.org/10.1007/s41365-019-0542-1
W.J. Wu, M. He, X. Zhou et al., A new method of energy reconstruction for large spherical liquid scintillator detectors. JINST 14 (03), P03009 (2019). doi: 10.1088/1748-0221/14/03/p03009http://doi.org/10.1088/1748-0221/14/03/p03009
G.L. Zhu, J.L. Liu, Q. Wang et al., Ultrasonic positioning system for the calibration of central detector. Nucl. Sci. Tech. 30, 5 (2019). doi: 10.1007/s41365-018-0530-xhttp://doi.org/10.1007/s41365-018-0530-x
Z. Qian, V. Belavin, V. Bokov et al., Vertex and energy reconstruction in JUNO with machine learning methods. arXiv:2101.04839 [physics.ins-det]
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution