Meng-Ya Guo, Xiu-Fang Li, Jie Wang, et al. Reformatted method for two-dimensional detector arrays measurement data in proton pencil beam scanning. [J]. Nuclear Science and Techniques 32(6):63(2021)
DOI:
Meng-Ya Guo, Xiu-Fang Li, Jie Wang, et al. Reformatted method for two-dimensional detector arrays measurement data in proton pencil beam scanning. [J]. Nuclear Science and Techniques 32(6):63(2021) DOI: 10.1007/s41365-021-00892-0.
Reformatted method for two-dimensional detector arrays measurement data in proton pencil beam scanning
摘要
Abstract
The spatial resolution of a commercial two-dimensional (2D) ionization chamber (IC) array is limited by the size of the individual detector and the center-to-center distance between sensors. For dose distributions with areas of steep dose gradients, inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements. This may introduce significant errors, particularly in proton spot scanning radiotherapy. In this study, by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method, a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution. Meanwhile, the similarity between the measured original data and the downsampled logfile-based reconstructed dose is regarded as the confidence of the reformatted dose distribution. Furthermore, we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements. The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements. The reformatted dose distributions generally yields a confidence exceeding 95%.
R. Pidikiti, B.C. Patel, M.R. Maynard et al., Commissioning of the world's first compact pencil-beam scanning proton therapy system. J. Appl. Clin. Med. Phys. 19, 94-105(2018). doi: 10.1002/acm2.12225http://doi.org/10.1002/acm2.12225
H. Sakurai, H. Ishikawa, T. Okumura, Proton beam therapy in Japan: current and future status. Jap. J. Clinical Oncol. 46, 885-892(2016). doi: 10.1093/jjco/hyw102http://doi.org/10.1093/jjco/hyw102
J. Doyen, P.Y. Bondiau, K. Benezery et al., Current situation and perspectives of proton therapy. Cancer Radiotherapie. 19 211-219(2015). doi: 10.1016/j.canrad.2014.12.010http://doi.org/10.1016/j.canrad.2014.12.010
E. Pedroni, R. Bacher, H. Blattmann et al., The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med. Phys. 22 37-53(1995). doi: 10.1118/1.597522http://doi.org/10.1118/1.597522
A. Lomax, T. Bohringer, A. Bolsi et al., Treatment planning and verification of proton therapy using spot scannin initial experience. Med. Phys. 31 3150-3157(2004). doi: 10.1118/1.1779371http://doi.org/10.1118/1.1779371
S. Safai, S.X. Lin, E. Pedroni, Development of an inorganic scintillating mixture for proton beam verification dosimetry. Phys. Med. Biol. 49 4637-4655(2004). doi: 10.1088/0031-9155/49/19/013http://doi.org/10.1088/0031-9155/49/19/013
F. Kroll, J. Pawelke, L. Karsch, Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography. Med. Phys. 40, 082104 (2013). doi: 10.1118/1.4813898http://doi.org/10.1118/1.4813898
M.F. Chan, C.-C. Chen, C. Shi et al., Patient-Specific QA of Spot-Scanning Proton Beams using Radiochromic Film, International journal of medical physics. Clinical Engineering Radiation Oncol. 6, 111-123(2017). doi: 10.4236/ijmpcero.2017.62011http://doi.org/10.4236/ijmpcero.2017.62011
B. Arjomandy, N. Sahoo, G. Ciangaru et al., Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med. Phys. 37, 5831-5837(2010). doi: 10.1118/1.3505011http://doi.org/10.1118/1.3505011
B. Arjomandy, N. Sahoo, X.N. Ding et al., Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance. Med. Phys. 35, 3889-3894 (2008). doi: 10.1118/1.2963990http://doi.org/10.1118/1.2963990
L. Brodbek, J. Kretschmer, K. Willborn et al., Analysis of the applicability of two-dimensional detector arrays in terms of sampling rate and detector size to verify scanned intensity-modulated proton therapy plans. Med. Phys. 47, 4589-4601(2020). doi: 10.1002/mp.14346http://doi.org/10.1002/mp.14346
N.S.H. Li, F. Poenisch, K. Suzuki et al., Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med. Phys. 40, 021703(2013). doi: 10.1118/1.4773312]http://doi.org/10.1118/1.4773312]
C. Winterhalter, A. Lomax, D. Oxley et al., A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys. Med. Biol. 63, 025022(2018). doi: 10.1088/1361-6560/aaa2adhttp://doi.org/10.1088/1361-6560/aaa2ad
M. Liu, H. Zhang, H. Shu et al., Technical commissioning of the spot scanning system in Shanghai Proton Therapy Facility. Rad. Det. Technol. Meth. 4, 46-55(2019). doi: 10.1007/s41605-019-0148-5http://doi.org/10.1007/s41605-019-0148-5
C.-H. Miao, M. Liu, C.-X. Yin et al., Precise magnetic field control of the scanning magnets for the APTRON beam delivery system. Nucl. Sci. Tech. 28, 172 (2017). doi: 10.1007/s41365-017-0324-6http://doi.org/10.1007/s41365-017-0324-6
H. Li, N. Sahoo, F. Poenisch et al., Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med. Phys. 40, 021703 (2013). doi: 10.1118/1.4773312http://doi.org/10.1118/1.4773312
M.F. Belosi, R. van der Meer, P. Garcia de Acilu Laa et al., Treatment log files as a tool to identify treatment plan sensitivity to inaccuracies in scanned proton beam delivery. Radiother Oncol. 125, 514-519 (2017). doi: 10.1016/j.radonc.2017.09.037http://doi.org/10.1016/j.radonc.2017.09.037
M.T. Gillin, N. Sahoo, M. Bues et al., Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas MD Anderson Cancer Center, Proton Therapy Center, Houston, Med. Phy. 37, 154-163(2010). doi: 10.1118/1.3259742http://doi.org/10.1118/1.3259742
X.R. Zhu, F. Poenisch, M. Lii et al., Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med. Phys. 40 041723(2013). doi: 10.1118/1.4798229http://doi.org/10.1118/1.4798229
H.P. Wieser, E. Cisternas, N. Wahl et al., Development of the open-source dose calculation and optimization toolkit matRad. Med. Phys. 44, 2556-2568(2017). doi: 10.1002/mp.12251http://doi.org/10.1002/mp.12251
E. Cisternas, A. Mairani, P. Ziegenhein et al., matRad - a multi-modality open source 3D treatment planning toolkit. 51, 1608-1611(2015). doi: 10.1007/978-3-319-19387-8_391http://doi.org/10.1007/978-3-319-19387-8_391
R.C. Gonzales, R.E. Woods, S.L. Eddins, Digital Image Processing, Prentice Hall, Upper Saddle River, NJ, 2008.
P.J. Burt, E.H. Adelson, The laplacian pyramid as a compact image code. IEEE T. Communications, 31, 532-540 (1983). doi: 10.1109/tcom.1983.1095851http://doi.org/10.1109/tcom.1983.1095851
A.D. Low, W.B. Harms, S. Mutic et al., A technique for the quantitative evaluation of dose distributions. Med. Phys. 25, 656-661(1998). doi: 10.1118/1.598248http://doi.org/10.1118/1.598248
R.-C. Han, Y.-J. Li, Y.-H. Pu, Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy. Nucl. Sci. Tech. 31, 13 (2020). doi: 10.1007/s41365-020-0722-zhttp://doi.org/10.1007/s41365-020-0722-z
A.C. Kraan, N. Depauw, B. Clasie et al., Impact of spot size variations on dose in scanned proton beam therapy. Phys. Med. 57, 58-64(2019). doi: 10.1016/j.ejmp.2018.12.011http://doi.org/10.1016/j.ejmp.2018.12.011
Collection efficiency of a monitor parallel plate ionization chamber for pencil beam scanning proton therapy
Design and performance study of a dielectric-filled cavity beam current monitor for HUST-PTF
A new imaging mode based on X-ray CT as prior image and sparsely sampled projections for rapid clinical proton CT
GPU-based cross-platform Monte Carlo proton dose calculation engine in the framework of Taichi
Static superconducting gantry-based proton CT combined with X-ray CT as prior image for FLASH proton therapy
Related Author
No data
Related Institution
The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology
School of Physical Science and Technology, ShanghaiTech University
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences
Shanghai Key Laboratory of Cryogenics & Superconducting RF Technology