1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
2.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, lxp@ihep.ac.cn
Scan for full text
Jing-Dong Liu, Xiao-Ping Li, Cai Meng, et al. System design and measurements of flux concentrator and its solid-state modulator for CEPC positron source. [J]. Nuclear Science and Techniques 32(7):77(2021)
Jing-Dong Liu, Xiao-Ping Li, Cai Meng, et al. System design and measurements of flux concentrator and its solid-state modulator for CEPC positron source. [J]. Nuclear Science and Techniques 32(7):77(2021) DOI: 10.1007/s41365-021-00904-z.
Positron sources are one of the most important components of the injector of a circular electron positron collector (CEPC). The CEPC is designed as an e,+,e,-, collider for a Higgs factory. Its accelerator system is composed of 100-km long storage rings and an injector. The design goal of the positron source is to obtain positron beams with a bunch charge of 3 nC. The flux concentrator (FC) is one of the cores of the positron source. This paper reports the design, development, and measurements of an FC prototype system. The prototype includes an FC and an all-solid-state high-current pulse modulator. Preliminary tests show that the peak current on the FC can reach 15.5 kA, and the peak magnetic field can reach 6.2 T. The test results are consistent with the theoretical simulation. The FC system fulfills the requirements of the CEPC positron source as well as provides a reference for the development of similar devices both domestically and abroad.
CEPC positron sourceFlux concentratorSolid-state modulatorHigh currentPeak magnetic field
The CEPC-SPPC Study Group, CEPC Conceptual Design Report. IHEP-CEPC-CDR-2018-09. arXiv: 1809.00285
C. Meng, J.R. Zhang, X.P. Li, CEPC Linac design. Int. J. Mod. Phys. A 34(13n14), 1940005(2019), DOI: 10.1142/S0217751X19400050 http://doi.org/10.1142/S0217751X19400050
H.J. Zheng, J Gao, J.Y. Zhai et al., RF design of 650-MHz 2-cell cavity for CEPC. Nucl Sci Tech 30, 155 (2019). doi: 10.1007/s41365-019-0671-6http://doi.org/10.1007/s41365-019-0671-6
C. Meng, X.P. Li, G.X. Pei et al., CEPC positron source design. Radiat Detect Technol Methods 3, 32 (2019). doi: 10.1007/s41605-019-0110-6http://doi.org/10.1007/s41605-019-0110-6
Y.L. Han, C. Bayar, A. Latina et al. Optimization of the CLIC positron source using a start-to-end simulation approach involving multiple simulation codes, Nucl. Instrum. Methods Phys Res A 928, 83-88(2019), doi: 10.1016/j.nima.2019.03.044http://doi.org/10.1016/j.nima.2019.03.044.
H. Nagoshi, M. Kuribayashi, M. Kuriki et al. A design of an electron driven positron source for the international linear collider, Nucl. Instrum. Methods Phys Res A 953(2020)1-9, doi: 10.1016/j.nima.2019.163134http://doi.org/10.1016/j.nima.2019.163134.
A. Variola. Advanced positron sources, Nucl. Instrum. Methods Phys Res A 740(2014)21-26, doi: 10.1016/j.nima.2013.10.051http://doi.org/10.1016/j.nima.2013.10.051.
V. Bharadwaj, Y. Batygin, R. Pitthan, et al. Design Issues for the ILC Positron Source, Proceedings of the IPAC2005, DOI: 10.1109/PAC.2005.1591422http://doi.org/10.1109/PAC.2005.1591422
J.T Liu, Z.Q Geng, X.J Sun et al. Development of the BEPCII positron source flux concentrator. High Energy Physics and Nuclear Physics. 29(4), 404-407 (2005). doi: 10.3321/j.issn:0254-3052.2005.04.014http://doi.org/10.3321/j.issn:0254-3052.2005.04.014
G.X Pei, Y.L. Sun, J.T Liu. BEPCII positron source. High Energy Physics and Nuclear Physics. 30(1),66-70(2006). doi: 10.1142/9789814401043_0015http://doi.org/10.1142/9789814401043_0015
A.V. Kulikov, S.D. Ecklund. SLC positron source pulsed flux concentrator, 1991 IEEE Particle Accelerator Conference (PAC). DOI: 10.1109/PAC.1991.164851http://doi.org/10.1109/PAC.1991.164851
H.T. Wang, W.M. Liu, W. Gai, Modeling and Prototyping of a Flux Concentrator for Positron Capture. IEEE T. Magnetics. 44(10):2402-2408 (2008). DOI: 10.1109/TMAG.2008.2001844http://doi.org/10.1109/TMAG.2008.2001844.
K. Akai, K. Furukawa, H. Koiso et al., SuperKEKB collider. Nucl. Instrum. Methods Phys Res A 907: 188-199 (2018). doi: 10.1016/j.nima.2018.08.017http://doi.org/10.1016/j.nima.2018.08.017.
D.S. Kim, B.K. Lee, S.S. Park et al., High-capacity capacitor charging power supply for a pulse modulator. J. Korean Phys. Soc. 76, 547-550 (2020). doi: 10.3938/jkps.76.547http://doi.org/10.3938/jkps.76.547
S.R. Jang, S.H. Ahn, H.J. Ryoo et al., Novel high voltage capacitor charger for pulsed power modulator. 2010 IEEE International Power Modulator and High Voltage Conference, Atlanta, GA, 317-321(2010), doi: 10.1109/IPMHVC.2010.5958357http://doi.org/10.1109/IPMHVC.2010.5958357.
D. Bortis, J. Biela, J. W. Kolar, Active gate control for current balancing of parallel-connected IGBT modules in solid-state modulators. IEEE T. Plasma Science, 36(5). 2632-2637 (2008), doi: 10.1109/TPS.2008.2003971http://doi.org/10.1109/TPS.2008.2003971.
S.-M. Park, S.-H. Song, H.-B. Jo et al., Solid-state pulsed power modulator for 9.3 GHz 1.7 MW X-band magnetron. IEEE T. Industrial Electronics, 68(2), 1148-1154 (2021), doi: 10.1109/TIE.2020.2967728http://doi.org/10.1109/TIE.2020.2967728.
U. R. Vemulapati, E. Bianda, D. Torresin et al., A method to extract the accurate junction temperature of an igct during conduction using gate–cathode voltage. IEEE T. Power Electronics, 31(8),5900-5905 (2016), doi: 10.1109/TPEL.2015.2492621http://doi.org/10.1109/TPEL.2015.2492621.
J. Choi, Y.M. Shin, Y.W. Choi et al., Solid-state pulse modulator for a 1.7-MW X-band magnetron. J. Korean Physical Society 64, 1267-1271 (2014). doi: 10.3938/jkps.64.1267http://doi.org/10.3938/jkps.64.1267
D.A. Komarov, S.P. Maslennikov, Solid-state modulator for high-power microwave devices with grid control. J. Commun. Technol. Electron. 64, 64-68 (2019). doi: 10.1134/S1064226919010091http://doi.org/10.1134/S1064226919010091
J.J. Liu, X.P. Ma, G.X. Pei et al., Phase-stabilized RF transmission system based on LLRF controller and optical delay line. Nucl. Sci. Tech. 30, 177 (2019). doi: 10.1007/s41365-019-0697-9http://doi.org/10.1007/s41365-019-0697-9
W.B. Wu, K. Xuan, W. Xu et al., Development of a control system for the fourth-harmonic cavity of the HLS storage ring. Nucl. Sci. Tech. 29, 153 (2018). doi: 10.1007/s41365-018-0497-7http://doi.org/10.1007/s41365-018-0497-7
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution