1.Sino-French Institute for Nuclear Energy and Technology, Sun Yat-sen University, Zhuhai 519082, China
Jun Su sujun3@mail.sysu.edu.cn
Scan for full text
Meng-Ting Jin, Su-Yang Xu, Guan-Ming Yang, et al. Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. [J]. Nuclear Science and Techniques 32(9):96(2021)
Meng-Ting Jin, Su-Yang Xu, Guan-Ming Yang, et al. Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. [J]. Nuclear Science and Techniques 32(9):96(2021) DOI: 10.1007/s41365-021-00933-8.
The transmutation of long-lived fission products through spallation induced by light nuclides was investigated for the purpose of determining the feasibility of this approach for long-lived fission products, in both economic and environmental terms. The cross-section data were obtained from the TALYS Evaluated Nuclear Data Library (TENDL). A thick target model was used to study the consumption of the target isotopes in the transmutation process. The transmutation yield was calculated using the highest beam intensity available with the China initiative Accelerator Driven System. It was found that the light nuclide-induced spallation reaction can significantly reduce the radio toxicity of the investigated long-lived fission products. Using the transmutation target made of elemental LLFP and the proton beam with an intensity of 5 mA, the consumption of ,90,Sr,93,Zr,107,Pd, or ,137,Cs can reach approximately 500 g per year.
TransmutationLong-lived fission productsSpallation
V.M. Efremenkov, Radioactive waste management at nuclear power plants. International Atomic Energy Agency Bulletin 31, 37-42 (1989).
P.A. Kharecha, J.E. Hansen, Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environmental science & technology 47, 4889-4895 (2013). doi: 10.1021/es3051197http://doi.org/10.1021/es3051197
R.E. Sims, H.H. Rogner, K. Gregory, Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31, 1315-1326 (2003). doi: 10.1016/S0301-4215(02)00192-1http://doi.org/10.1016/S0301-4215(02)00192-1
A.C. Mueller, Nuclear waste incineration and accelerator aspects from the european pds-xads study. Nuclear Physics A 751, 453–468 (2005). Proceedings of the 22nd International Nuclear Physics Conference (Part 1). doi: 10.1016/j.nuclphysa.2005.02.015http://doi.org/10.1016/j.nuclphysa.2005.02.015
J. Schapira, Gedeon: A joint venture between research (cea and cnrs) and industry (edf and framatome). Nuclear Physics A 654, C458–C466 (1999). Proceedings of the International Nuclear Physics Conference. doi: 10.1016/S0375-9474(99)00270-5http://doi.org/10.1016/S0375-9474(99)00270-5
B.K. Sovacool, A critical evaluation of nuclear power and renewable electricity in asia. Journal of Contemporary Asia 40, 369-400 (2010). doi: 10.1080/00472331003798350http://doi.org/10.1080/00472331003798350
A. Olacel, C. Borcea, P. Dessagne, et al., Neutron inelastic cross-section measurements for 24Mg. Phys. Rev. C 90, 034603 (2014). doi: 10.1103/PhysRevC.90.034603http://doi.org/10.1103/PhysRevC.90.034603
M. Salvatores, I. Slessarev, A. Tchistiakov, The transmutation of long-lived fission products by neutron irradiation. Nuclear Science and Engineering 130, 309-319 (1998). doi: 10.13182/NSE98-A2008http://doi.org/10.13182/NSE98-A2008
C. Paradela, L. Tassan-Got, L. Audouin, et al., Neutron-induced fission cross section of 234U and 237NP measured at the cern neutron time-of-flight (n_tof) facility. Phys. Rev. C 82, 034601 (2010). doi: 10.1103/PhysRevC.82.034601http://doi.org/10.1103/PhysRevC.82.034601
W. Gudowski, Accelerator-driven transmutation projects. the importance of nuclear physics research for waste transmutation. Nuclear Physics A 654, C436–C457 (1999). Proceedings of the International Nuclear Physics Conference. doi: 10.1016/S0375-9474(99)00269-9http://doi.org/10.1016/S0375-9474(99)00269-9
K. Fraval, F. Gunsing, S. Altstadt, et al., Measurement and analysis of the 241Am(n,y),) cross section with liquid scintillator detectors using time-of-flight spectroscopy at the n_tof facility at cern. Phys. Rev. C 89, 044609 (2014). doi: 10.1103/PhysRevC.89.044609http://doi.org/10.1103/PhysRevC.89.044609
IAEA, Implications of Partitioning and Transmutation in Radioactive Waste Management, no. no. 435 in Technical Reports Series, (International Atomic Energy Agency, Vienna, 2004)
W. Wlazło, T. Enqvist, P. Armbruster, et al., Cross sections of spallation residues produced in 1A GeV208Pb on proton reactions. Phys. Rev. Lett. 84, 5736-5739 (2000). doi: 10.1103/PhysRevLett.84.5736http://doi.org/10.1103/PhysRevLett.84.5736
T. Enqvist, P. Armbruster, J. Benlliure, et al., Primary-residue production cross sections and kinetic energies in 1A GeV 208 Pb on deuteron reactions. Nuclear Physics A 703, 435-465 (2002). doi: 10.1016/S0375-9474(01)01340-9http://doi.org/10.1016/S0375-9474(01)01340-9
H.Y. Meng, Y.W. Yang, Z.L. Zhao, et al., Physical studies of minor actinide transmutation in the accelerator-driven subcritical system. Nuclear Science and Techniques 30, 91 (2019). doi: 10.1007/s41365-019-0623-1http://doi.org/10.1007/s41365-019-0623-1
Z.L. Zhao, Y.W. Yang, S. Hong, Application of fluka and openmc in coupled physics calculation of target and subcritical reactor for ads. Nuclear Science and Techniques 30, 10 (2019). doi: 10.1007/s41365-018-0539-1http://doi.org/10.1007/s41365-018-0539-1
H. Wang, H. Otsu, H. Sakurai, et al., Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137 CS and 90 Sr on proton and deuteron. Physics Letters B 754, 104-108 (2016). doi: 10.1016/j.physletb.2015.12.078http://doi.org/10.1016/j.physletb.2015.12.078
V. Artisyuk, M. Saito, A. Stankovsky, Challenge of transmutation of long-lived nuclides. Progress in Nuclear Energy 47, 327-338 (2005). doi: 10.1016/j.pnucene.2005.05.031http://doi.org/10.1016/j.pnucene.2005.05.031
H. Yapıcı, N. Demir, G. Genç, Neutronic analysis for transmutation of minor actinides and long-lived fission products in a fusion-driven transmuter (fdt). Journal of Fusion Energy 25, 225-239 (2006). doi: 10.1007/s10894-006-9027-4http://doi.org/10.1007/s10894-006-9027-4
H. Yapıcı, G. Genç, N. Demir, A comprehensive study on neutronics of a lead-bismuth eutectic cooled accelerator-driven sub-critical system for long-lived fission product transmutation. Annals of Nuclear Energy 35, 1264-1273 (2008). doi: 10.1016/j.anucene.2007.12.007http://doi.org/10.1016/j.anucene.2007.12.007
Z.X. Fang, M. Yu, Y.G. Huang, et al., Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nuclear Science and Techniques 32, 72 (2021). doi: 10.1007/s41365-021-00911-0http://doi.org/10.1007/s41365-021-00911-0
J.Y. Tang, Q. An, J.B. Bai, et al., Back-n white neutron source at csns and its applications. Nuclear Science and Techniques 32, 11 (2021). doi: 10.1007/s41365-021-00846-6http://doi.org/10.1007/s41365-021-00846-6
R. Xu, Z.J. Wang, Y.Y. Xue, et al., Displacement damage in optocouplers induced by high energy neutrons at back-n in china spallation neutron source. Chinese Physics B 29, 014210 (2020). doi: 10.1088/1674-1056/ab5efbhttp://doi.org/10.1088/1674-1056/ab5efb
Y. Liu, W. Chen, C. He, et al., Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons. Chinese Physics B 28, 067302 (2019). doi: 10.1088/1674-1056/28/6/067302http://doi.org/10.1088/1674-1056/28/6/067302
T. Hayakawa, S. Miyamoto, R. Hajima, et al., Proposal for selective isotope transmutation of long-lived fission products using quasi-monochromatic γ-ray beams. Journal of Nuclear Science and Technology 53, 2064-2071 (2016). doi: 10.1080/00223131.2016.1194776http://doi.org/10.1080/00223131.2016.1194776
R. Nagai, R. Hajima, M. Mori, et al., Demonstration of high-flux photon generation from an erl-based laser compton photon source. TUPJE002, these proceedings, IPAC 15,. doi: 10.18429/JACoW-IPAC2015-TUPJE002http://doi.org/10.18429/JACoW-IPAC2015-TUPJE002
D. Li, K. Imasaki, K. Horikawa, et al., Iodine transmutation through laser compton scattering gamma rays. Journal of nuclear science and technology 46, 831-835 (2009). doi: 10.1080/18811248.2007.9711592http://doi.org/10.1080/18811248.2007.9711592
H. Ejiri, T. Shima, S. Miyamoto, et al., Resonant photonuclear reactions for isotope transmutation. Journal of the Physical Society of Japan 80, 094202 (2011). doi: 10.1143/JPSJ.80.094202http://doi.org/10.1143/JPSJ.80.094202
H. Harada, T. Baba, M. IgasFFira, et al., Plan of LLFP neutron cross section measurements for nuclear transmutation. Journal of Nuclear Science and Technology 39, 366-368 (2002). doi: 10.1080/00223131.2002.10875116http://doi.org/10.1080/00223131.2002.10875116
A. Hermanne, Transmutation of long lived fission products: The possibilities of proton induced reactions. Journal of Nuclear Science and Technology 39, 1202-1205 (2002). doi: 10.1080/00223131.2002.10875318http://doi.org/10.1080/00223131.2002.10875318
H. Wada, S. Nakamura, K. Furutaka, et al., Production of the isomeric state of 138 CS in the thermal neutron capture reaction 137 CS (n, γ) 138 Cs. Journal of Nuclear Science and Technology 37, 827-831 (2000). doi: 10.1080/18811248.2000.9714963http://doi.org/10.1080/18811248.2000.9714963
S. Nakamura, K. Furutaka, H. Wada, et al., Measurement of the thermal neutron capture cross section and the resonance integral of the 90extSr(n, gamma) 91extSr reaction. Journal of Nuclear Science and Technology 38, 1029-1034 (2001). doi: 10.1080/18811248.2001.9715132http://doi.org/10.1080/18811248.2001.9715132
S. Kunieda, N. Furutachi, F. Minato, et al., JENDL/ImPACT-2018: a new nuclear data library for innovative studies on transmutation of long-lived fission products. Journal of Nuclear Science and Technology 56, 1073-1091 (2019). doi: 10.1080/00223131.2019.1647889http://doi.org/10.1080/00223131.2019.1647889
C.W. Ma, D. Peng, H.L. Wei, et al., Isotopic cross-sections in proton induced spallation reactions based on the bayesian neural network method. Chinese Physics C 44, 014104 (2020). doi: 10.1088/1674-1137/44/1/014104http://doi.org/10.1088/1674-1137/44/1/014104
G. Yang, S. Xu, M. Jin, et al., Prediction of the cross-sections of isotopes produced in deuteron-induced spallation of long-lived fission products. Chinese Physics C 43, 104101 (2019). doi: 10.1088/1674-1137/43/10/104101http://doi.org/10.1088/1674-1137/43/10/104101
W. Sun, W. Qiu, J. Su, Production of high-energy neutrons by interaction of a deuteron beam with matter. Applied Radiation and Isotopes 174, 109752 (2021). doi: 10.1016/j.apradiso.2021.109752http://doi.org/10.1016/j.apradiso.2021.109752
Q.F. Song, S.Y. Xu, J. Su, Nucleon stripping in deuteron-induced spallation reactions at hundreds mev/nucleon. Chinese Physics C 45, 044101 (2021). doi: 10.1088/1674-1137/abde31http://doi.org/10.1088/1674-1137/abde31
Z. Wang, F. Wang, G. Huang, et al., in 10th Int. Particle Accelerator Conf.(IPAC'19), Melbourne, Australia, 19-24 May 2019, The status of ciads superconducting linac. JACOW Publishing, Geneva, Switzerland, 2019, pp. 994-997
Y. Qin, P. Zhang, H. Cai, et al., Transfer line including vacuum differential system for a high-power windowless target. Physical Review Accelerators and Beams 23, 113002 (2020). doi: 10.1103/PhysRevAccelBeams.23.113002http://doi.org/10.1103/PhysRevAccelBeams.23.113002
P. Sigmund, Particle penetration and radiation effects springer series in solid-state physics. (2006)
G.F. Knoll, Radiation detection and measurement, (John Wiley & Sons, 2010)
S. Xu, G. Yang, M. Jin, et al., Probing the deuteron breakup and linking the cross sections of residue production between the neutron- and deuteron-induced spallation at 500 meV/nucleon. Phys. Rev. C 101, 024609 (2020). doi: 10.1103/PhysRevC.101.024609http://doi.org/10.1103/PhysRevC.101.024609
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution