1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.CAS Innovative Academies in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
Jian Tian tianjian@sinap.ac.cn
Scan for full text
Yun Wang, Jian Tian, Shan-Wu Wang, et al. Experimental study on the penetration characteristics of leaking molten salt in the thermal insulation layer of aluminum silicate fiber. [J]. Nuclear Science and Techniques 32(9):92(2021)
Yun Wang, Jian Tian, Shan-Wu Wang, et al. Experimental study on the penetration characteristics of leaking molten salt in the thermal insulation layer of aluminum silicate fiber. [J]. Nuclear Science and Techniques 32(9):92(2021) DOI: 10.1007/s41365-021-00935-6.
The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors. While the molten salt leaks from the pipeline or storage tank, it will contact the insulation layer outside; hence, the processes of penetration and spreading play an important role in the development of leakage accidents. In this study, the penetration and diffusion of leaking molten salt (LMS) in an aluminum silicate fiber (ASF) thermal insulation layer were studied experimentally. A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt, and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetration time and penetration mass of the LMS. The results show that, when the molten salt discharges from the outlet and reaches the thermal insulation layer, the LMS will penetrate and seep out from the ASF, and a higher flow rate of LMS requires less penetration time and leaked mass of LMS. As the temperature of the LMS and thickness of the ASF increased, the penetration time became longer and the leaked mass became greater at a lower LMS flow rate; when the LMS flow rate increased, the penetration time and leaked mass decreased rapidly and tended to flatten.
Molten salt reactorMolten salt leakagePenetrationInsulation layer
H.J. Xu, in Thorium Energy for the World, ed. by J.P. Revol, M. Bourquin, Y. Kadi et al., (Springer, Cham, 2016), p. 37-44 doi: 10.1007/978-3-319-26542-1_6http://doi.org/10.1007/978-3-319-26542-1_6
C.W. Forsberg, P.F. Peterson, P.S. Pickard, Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity. Nucl. Technol. 144(3): 289-302 (2003). doi: 10.13182/NT03-1http://doi.org/10.13182/NT03-1
B. Mignacca, G. Locatelli, Economics and finance of Molten Salt Reactors. Prog. Nucl. Energy 129, 103503 (2020). doi: 10.1016/j.pnucene.2020.103503http://doi.org/10.1016/j.pnucene.2020.103503
D. F. Williams, L. M. Toth, K. T. Clarno, Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR), Oak Ridge National Laboratory, ORNL/TM-2006/12.
C.L. Wang, H. Qin, D.L. Zhang et al., Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors. Nucl. Sci. Tech. 31(7):65(2020). doi: 10.1007/s41365-020-00780-zhttp://doi.org/10.1007/s41365-020-00780-z
Y.M. Ferng, K.Y. Lin, C.W. Chi, CFD investigating thermal-hydraulic characteristics of FLiNaK salt as a heat exchange fluid. Applied Thermal Engineering 37, 235-240 (2012). doi: 10.1016/j.applthermaleng.2011.11.021http://doi.org/10.1016/j.applthermaleng.2011.11.021
H. X. Xu, J. Lin, Y. J. Zhong et al., Characterization of molten 2LiF–BeF2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor. Nucl. Sci. Tech. 30, 74 (2019). doi: 10.1007/s41365-019-0600-8http://doi.org/10.1007/s41365-019-0600-8
X.Y. Jiang, H.J. Lu, Y.S. Chen et al., Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for Thorium based Molten Salt Reactor. Nucl. Sci. Tech. 31(2):16(2020). doi: 10.1007/s41365-020-0729-5http://doi.org/10.1007/s41365-020-0729-5
Q.M. Li, C. Zhou, J. Tian et al., Avoiding sealing failure of flanged connection for tubes made of dissimilar materials subjected to elevated temperature. Nucl. Sci. Tech. 30(1):1(2019). doi: 10.1007/s41365-018-0540-8http://doi.org/10.1007/s41365-018-0540-8
C.Y. Li, X.B. Xia, J. Cai et al., Radiation dose distribution of liquid fueled Thorium Molten Salt Reactor. Nucl. Sci. Tech. 32(2):22(2021). doi: 10.1007/s41365-021-00857-3http://doi.org/10.1007/s41365-021-00857-3
C.Q. Chen, X.B. Xia, Z.H. Zhang et al., Radiological environmental impact analysis of a 2-MW thorium molten salt reactor during an accident. Nucl. Sci. Tech. 30(5):78(2019). doi: 10.1007/s41365-019-0605-3http://doi.org/10.1007/s41365-019-0605-3
L.C. Olson, J.W. Ambrosek, K. Sridharan et al., Materials corrosion in molten LiF–NaF–KF salt. J. Fluor. Chem. 130, 67-73 (2009). doi: 10.1016/j.jfluchem.2008.05.008http://doi.org/10.1016/j.jfluchem.2008.05.008
X. J. Guo, Z. Ding, G. F. Qin et al., A literature review on some engineering issues of high temperature molten salt thermal energy storage systems. Energy Storage Science and Technology 4(01), 32-43 (2015). doi: 10.3969/j.issn.2095-4239.2015.01.003http://doi.org/10.3969/j.issn.2095-4239.2015.01.003
H. Zhu, R. Holmes, T. Hanley et al., High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt. Corrosion Science 91, 1-6 (2015). doi: 10.1016/j.corsci.2014.11.013http://doi.org/10.1016/j.corsci.2014.11.013
S. E. Beall, P. N. Haubenreich, R. B. Lindauer et al, MSRE design and operations report, Part V., Reactor safety analysis report. ORNL-TM-732.
X. Y. Wang, Y. F. Cao, Ceramic fiber as a new material. Journal of Cellulose Science and Technology. 20(1): 79-85 (2012). (In Chinese) doi: 10.16561/j.cnki.xws.2012.01.010http://doi.org/10.16561/j.cnki.xws.2012.01.010
C. Journeau, P. Piluso, J. Haquet et al., Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series. Annals of Nuclear Energy 36, 1597-1613 (2009). doi: 10.1016/j.anucene.2009.07.006http://doi.org/10.1016/j.anucene.2009.07.006
W. Yeon, K. Bang, Y. Choi et al., CFD analysis of core melt spreading on the reator cavity floor using ANSYS CFX code. Nucl. Eng. Des. 249, 90-96 (2012). doi: 10.1016/j.nucengdes.2011.08.047http://doi.org/10.1016/j.nucengdes.2011.08.047
H. Na, H.S. Kim, H.J. Lee et al., Preliminary feasibility study of post-flooding ex-vessel corium cooling strategy by CFD spreading simulations and concrete ablation analysis. Prog. Nucl. Energ. 97, 139-152 (2017). doi: 10.1016/j.pnucene.2016.12.017http://doi.org/10.1016/j.pnucene.2016.12.017
I. Ye, J.A. Kim, C. Ryu et al., Numerical investigation of the spreading and heat transfer characteristics of ex-vessel core melt. Nucl. Eng. Technol. 45, 21-28 (2013). doi: 10.5516/NET.03.2012.011http://doi.org/10.5516/NET.03.2012.011
H. Jung, M.S. Kim, A. Ko et al., Investigation of CO2 leak accident in SFR coupled with S-CO2 Brayton cycle. Ann. Nucl. Energy 103, 212-226 (2017). doi: 10.1016/j.anucene.2017.01.013http://doi.org/10.1016/j.anucene.2017.01.013
M. Jeltsov, W. Villanueva, P. Kudinov, Steam generator leakage in lead cooled fast reactors: Modeling of void transport to the core. Nucl. Eng. Des. 328, 255-265 (2018). doi: 10.1016/j.nucengdes.2018.01.006http://doi.org/10.1016/j.nucengdes.2018.01.006
J. Shan, J. Ding, J. Lu, Numerical investigation of high-temperature molten salt leakage. Energy Procedia. 69, 2072-2080 (2015). doi: 10.1016/j.egypro.2015.03.221http://doi.org/10.1016/j.egypro.2015.03.221
J.Q. Wu, J. Ding, J.F. Lu et al., Experimental study of the leakage nitrate molten salt in the soil. Journal of Engineering Thermophysics 38(6), 1300-1304 (2017). (in Chinese)
Y. Zhang, J. Wu, W. Wang et al., Experimental and numerical studies on molten salt migration in porous system with phase change. Int. J. Heat Mass Transf. 129, 397-405 (2019). doi: 10.1016/j.ijheatmasstransfer.2018.09.122http://doi.org/10.1016/j.ijheatmasstransfer.2018.09.122
D.R. Wu, Chemical process design manual, fourth ed., (Chemical Industry Press, Beijing, 2009). (in Chinese)
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution