Ding She, Bing Xia, Jiong Guo, et al. Prediction calculations for the first criticality of the HTR-PM using the PANGU code. [J]. Nuclear Science and Techniques 32(9):90(2021)
DOI:
Ding She, Bing Xia, Jiong Guo, et al. Prediction calculations for the first criticality of the HTR-PM using the PANGU code. [J]. Nuclear Science and Techniques 32(9):90(2021) DOI: 10.1007/s41365-021-00936-5.
Prediction calculations for the first criticality of the HTR-PM using the PANGU code
The high-temperature reactor pebble-bed module (HTR-PM) is a modular high-temperature gas-cooled reactor (HTGR) demonstration power plant. Its first criticality experiment is scheduled for the latter half of 2021. Before performing the first criticality experiment, a prediction calculation was performed using PANGU code. This paper presents the calculation details for predicting the HTR-PM first criticality using PANGU, including the input model and parameters, numerical results, and uncertainty analysis. The accuracy of the PANGU code was demonstrated by comparing it with the high-fidelity Monte Carlo solution, using the same input configurations. It should be noted that ,k,eff, can be significantly affected by uncertainties in nuclear data and certain input parameters, making the criticality calculation challenging. Finally, PANGU is used to predict the critical loading height of the HTR-PM first criticality under design conditions, which will be evaluated in the upcoming experiment later this year.
关键词
Keywords
HTR-PMFirst criticalityPredictionPANGU
references
Z. Zhang, Z. Wu, Y. Sun et al., Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM. Nucl. Eng. Des. 236(11), 485-490 (2006). doi: 10.1016/j.nucengdes.2005.11.024http://doi.org/10.1016/j.nucengdes.2005.11.024
Z. Wu, D. Lin, D. Zhong, The design features of the HTR-10. Nucl. Eng. Des. 218(1): 25-32 (2002). doi: 10.1016/S0029-5493(02)00182-6http://doi.org/10.1016/S0029-5493(02)00182-6
L. Brey, Evaluation of High Temperature Gas Cooled Reactor Performance Part I: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10. IAEA-TECDOC-1382 (2003).
X. Jing, X. Xu, Y. Yang et al., Prediction calculations and experiments for the first criticality of the 10 MW High Temperature Gas-cooled Reactor-Test Module. Nucl. Eng. Des. 218(1-3), 43-49 (2002). doi: 10.1016/S0029-5493(02)00184-Xhttp://doi.org/10.1016/S0029-5493(02)00184-X
W.K. Terry, S.S. Kim, L.M. Montierth et al., Evaluation of the HTR-10 Reactor as a Benchmark for Physics Code QA (No. INL/CON-06-11699). Idaho National Laboratory (2006).
D. She, J. Guo, Z. Liu, L. Shi, PANGU code for pebble-bed HTGR reactor physics and fuel cycle simulations. Ann. Nucl. Energy 126, 48-58 (2018). doi: 10.1016/j.anucene.2018.11.005http://doi.org/10.1016/j.anucene.2018.11.005
Y. Wen, D. She, L. Shi, The neutron streaming correction method in the homogenization of Pebble-bed HTGR reflector. Ann. Nucl. Energy 162, 108531 (2021). doi: 10.1016/j.anucene.2021.108531http://doi.org/10.1016/j.anucene.2021.108531
ASTM, Standard Practice for Determining Equivalent Boron Contents of Nuclear Materials. C1233-09 (2013).
K. Wang, Z.G. Li, D. She et al., RMC–A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121-129 (2013). doi: 10.1016/j.anucene.2014.08.048http://doi.org/10.1016/j.anucene.2014.08.048
D. She, Z. Liu, L. Shi, An equivalent homogenization method for treating the stochastic media. Nucl. Sci. Eng. 185(2), 351-360 (2017). doi: 10.1080/00295639.2016.1272363http://doi.org/10.1080/00295639.2016.1272363
Q.D. Wang, D. She, B. Xia et al., Evaluation of pebble-bed homogenized cross sections in HTGR fuel cycle simulations. Progress in Nuclear Energy, 117, 103041 (2019). doi: 10.1016/j.pnucene.2019.103041http://doi.org/10.1016/j.pnucene.2019.103041
D.A. Brown, M.B. Chadwick, R. Capote et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nuclear Data Sheet, 148, 1-142 (2018). doi: 10.1016/j.nds.2018.02.001http://doi.org/10.1016/j.nds.2018.02.001
F. Reitsma, G. Strydom, F. Bostelmann et al., The IAEA coordinated research program on HTGR uncertainty analysis: phase I status and initial results (2014).
F. Bostelmann, G. Ilas, W.A. Wieselquist, Key Nuclear Data Impacting Reactivity in Advanced Reactors. Oak Ridge National Lab., Oak Ridge, TN, United States (2020).
L. Zhang, D. She, L. Shi, Influence of graphitization degree of nuclear graphite on HTGR reactor physics calculation. Ann. Nucl. Energy 143, 107458 (2020). doi: 10.1016/j.anucene.2020.107458http://doi.org/10.1016/j.anucene.2020.107458
D. She, F. Chen, B. Xia et al., Simulation of the HTR-10 operation history with the PANGU code. Front. Energy Res. 9, 302 (2021). doi: 10.3389/fenrg.2021.704116http://doi.org/10.3389/fenrg.2021.704116
First-principle studies of radioactive fission productions Cs/Sr/Ag/I adsorption on chrome/molybdenum steel in Chinese 200 MW HTR-PM.
A Genetic-Algorithm-based Neural Network Approach for Radioactive Activity Prediction
Related Author
No data
Related Institution
Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology