1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
lizeguang@mail.tsinghua.edu.cn
Scan for full text
Yu-Chuan Guo, Zi-Lin Su, Ze-Guang Li, et al. Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application. [J]. Nuclear Science and Techniques 32(10):104(2021)
Yu-Chuan Guo, Zi-Lin Su, Ze-Guang Li, et al. Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application. [J]. Nuclear Science and Techniques 32(10):104(2021) DOI: 10.1007/s41365-021-00947-2.
A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simulation for the heat pipe cooled reactor startup from the cold state. It is required that this model not only describe the transient behavior during the startup period, but also reduce the computing resources of the heat pipe cooled reactor simulation in the simplest way. In this study, a simplified model that integrates the two-zone and network models is proposed. In this model, vapor flow in the vapor space, evaporation, and condensation in the vapor-liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe. An experimental system for a high-temperature heat pipe was developed to validate the proposed model. A potassium heat pipe was utilized as the experimental material. Startup experiments were performed with different heating powers. Compared with the experimental results, the accuracy of the proposed model was verified. Moreover, the proposed model can predict the vapor flow, pressure drop, and temperature drop in the vapor space. As indicated by the analysis results, the essential requirements for successful startup are also determined. The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements. All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state; hence, can act as a basic tool for the heat pipe cooled reactor simulation.
High-temperature heat pipeStartupTwo-zone modelNetwork model
D.I. Poston, The heatpipe-operated Mars exploration reactor (HOMER). AIP Conference Proceedings. American Institute of Physics, 552(1): 797-804 (2001). doi: 10.1063/1.1358010http://doi.org/10.1063/1.1358010.
M.S. El-Genk, J.M. Tournier, Conceptual Design of HP-STMC Space Reactor Power System for 110-kWe, 10-Year Mission. in these Proceedings of Space Technology and Applications International Forum (STAIF-04), M. S. El-Genk, Ed., American Institute of Physics, Melville, NY, 2004a. doi: 10.1063/1.1649628http://doi.org/10.1063/1.1649628.
M.S. El-Genk, J. Tournier, "SAIRS" — Scalable Amtec Integrated Reactor space power System. Prog. Nucl. Energy, 2004, 45(1):25-69. doi: 10.1016/j.pnucene.2004.08.002http://doi.org/10.1016/j.pnucene.2004.08.002.
J. H. Jang, A. Faghri, W. S. Chang et al., Mathematical modeling and analysis of heat pipe stan-up from frozen state. ASME J. Heat Transfer, 112, 586-594 (1990). doi: 10.1115/1.2910427http://doi.org/10.1115/1.2910427.
Y. Cao, A. Faghri, Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model. J. Heat Transfer 115(1):239-245 (1993). doi: 10.1115/1.2910655http://doi.org/10.1115/1.2910655
Y. Cao, A. Faghri, A numerical analysis of phase-change problems including natural convection. J. Heat Transfer 112: 812-816 (1990). doi: 10.1115/1.2910466http://doi.org/10.1115/1.2910466
Y. Cao, A. Faghri, A numerical analysis of high-temperature heat pipe startup from the frozen state. J. Heat Transfer 115(1):247-254 (1993). doi: 10.1115/1.2910657http://doi.org/10.1115/1.2910657
Y. Cao, A. Faghri, Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numer. Heat Transfer, 18(4): 483-502 (1991). doi: 10.1080/10407789008944804http://doi.org/10.1080/10407789008944804
S.V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980. doi: 10.1201/9781482234213http://doi.org/10.1201/9781482234213
J.M. Tournier, M.S. El-Genk, A vapor flow model for analysis of liquid-metal heat pipe startup from a frozen state. Int. J. Heat Mass Tran. 39(18):3767–3780 (1996). doi: 10.1016/0017-9310(96)00066-Xhttp://doi.org/10.1016/0017-9310(96)00066-X
A. Faghri, M. Buchko, Y. Cao, A study of high-temperature heat pipes with multiple heat sources and sinks: Part I - experimental methodology and frozen startup profiles. J. Heat Transfer, 113(4), 1003-1009 (1991). doi: 10.1115/1.2911193http://doi.org/10.1115/1.2911193
A. Faghri, M. Buchko, Y. Cao, A study of high-temperature heat pipes with multiple heat sources and sinks: Part II—Analysis of continuum transient and steady-state experimental data with numerical predictions. J. Heat Transfer, 113(4), 1010-1016 (1991). doi: 10.1115/1.2911194http://doi.org/10.1115/1.2911194.
Q. Guo, H. Guo, X.K. Yan et al., Influence of inclination angle on the start-up performance of a sodium-potassium alloy heat pipe. Heat Transfer Eng. 39(17-18): 1627-1635 (2018). doi: 10.1080/01457632.2017.1370325http://doi.org/10.1080/01457632.2017.1370325.
C. Wang, L. Zhang, X. Liu et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application. Ann. Nucl. Energy 136: 107051 (2020). doi: 10.1016/j.anucene.2019.107051http://doi.org/10.1016/j.anucene.2019.107051.
P.M. Sockol, R. Forman, Re-examination of heat pipe startup. IEEE Conference Record of 1970 Thermionic Conversion Specialist Conference. 1970.
Y. Cao, A. Faghri, Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation. J. Heat Transfer 114(4), 1028-1035 (1992). doi: 10.1115/1.2911873http://doi.org/10.1115/1.2911873.
J.M. Tournier, M.S. El-Genk, Startup of a horizontal lithium–molybdenum heat pipe from a frozen state. Inter. J. Heat Mass Tran. 46(4): 671-685 (2003). doi: 10.1016/S0017-9310(02)00324-1http://doi.org/10.1016/S0017-9310(02)00324-1.
Z.J. Zuo, A. Faghri, A network thermodynamic analysis of the heat pipe. J. Heat Mass Tran. 41(11): 1473-1484 (1998). doi: 10.1016/S0017-9310(97)00220-2http://doi.org/10.1016/S0017-9310(97)00220-2.
S.W. Chi, Heat Pipe Theory and Practice, Hemispere Publishing Corporation, Washington, DC, 1976
C. Ferrandi, F. Iorizzo, M. Mameli et al., Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation. Appl. Therm. Eng. 50(1): 1280-1290 (2013). doi: 10.1016/j.applthermaleng.2012.07.022http://doi.org/10.1016/j.applthermaleng.2012.07.022.
W. J. Bowman and J. E. Hitchcock, Transient compressible heat pipe vapor dynamics. 1988 National Heat Transfer Conference, Houston, TX, HTD-96, 1, 329-337 (1988).
F. Issacci, I. Catton, N. M. Ghoniem, Vapor dynamics of heat pipe startup. ASME J. Heat Transfer 113, 985-994 (1991). doi: 10.1115/1.2911232http://doi.org/10.1115/1.2911232.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution