1.School of Physics Electrical Engineering, AnYang Normal University, Anyang 455000, China
jfxu@aynu.edu.cn
Scan for full text
Jian-Feng Xu. Bulk viscosity of interacting magnetized strange quark matter. [J]. Nuclear Science and Techniques 32(10):111(2021)
Jian-Feng Xu. Bulk viscosity of interacting magnetized strange quark matter. [J]. Nuclear Science and Techniques 32(10):111(2021) DOI: 10.1007/s41365-021-00954-3.
The bulk viscosity of interacting strange quark matter in a strong external magnetic field ,B,m, with a real equation of state is investigated. It is found that interquark interactions can significantly increase the bulk viscosity, and the magnetic field ,B,m, can cause irregular oscillations in both components of the bulk viscosity,, (parallel to ,B,m,) and ,, (perpendicular to ,B,m,). A comparison with non-interacting strange quark matter reveals that when ,B,m, is sufficiently large,, is more affected by interactions than ,,. Additionally, the quasi-oscillation of the bulk viscosity with changes in density may facilitate the formation of magnetic domains. Moreover, the resulting ,r,-mode instability windows are in good agreement with observational data for compact stars in low-mass X-ray binaries. Specifically, the ,r,-mode instability window for interacting strange quark matter in high magnetic fields has a minimum rotation frequency exceeding 1050 Hz, which may explain the observed very high spin frequency of a pulsar with ,ν,=1122 Hz.
Strange quark matterBulk viscosityStrong magnetic fieldStrange starR-mode instability window
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016). doi: 10.1103/PhysRevLett.116.061102http://doi.org/10.1103/PhysRevLett.116.061102
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 9, 031040 (2019). doi: 10.1103/PhysRevX.9.031040http://doi.org/10.1103/PhysRevX.9.031040
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017). doi: 10.1103/PhysRevLett.119.161101http://doi.org/10.1103/PhysRevLett.119.161101
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 848, L12 (2017). doi: 10.3847/2041-8213/aa91c9http://doi.org/10.3847/2041-8213/aa91c9
A. Goldstein, P. Veres, E. Burns, M.S. Briggs et al., An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A. Astrophys. J. 848, L14 (2017). doi: 10.3847/2041-8213/aa8f41http://doi.org/10.3847/2041-8213/aa8f41
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018). doi: 10.1103/PhysRevLett.121.161101http://doi.org/10.1103/PhysRevLett.121.161101
E. Annala, T. Gorda, A. Kurkela et al., Gravitational-wave constraints on the neutron-star-matter equation of state. Phys. Rev. Lett. 120, 172703 (2018). doi: 10.1103/PhysRevLett.120.172703http://doi.org/10.1103/PhysRevLett.120.172703
S. De, D. Finstad, J.M. Lattimer et al., Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 121, 091102 (2018). doi: 10.1103/PhysRevLett.121.091102http://doi.org/10.1103/PhysRevLett.121.091102
Z.-Y. Zhu, E.-P. Zhou, A. Li, Neutron star equation of state from the quark level in light of GW170817. Astrophys. J. 862, 98 (2018). doi: 10.3847/1538-4357/aacc28http://doi.org/10.3847/1538-4357/aacc28
M. Fasano, T. Abdelsalhin, A. Maselli et al., Constraining the Neutron Star Equation of State Using Multiband Independent Measurements of Radii and Tidal Deformabilities. Phys. Rev. Lett. 123, 141101 (2019). doi: 10.1103/PhysRevLett.123.141101http://doi.org/10.1103/PhysRevLett.123.141101
P.D. Lasky, Gravitational Waves from Neutron Stars: A Review. Pub. Astron. Soc. Aust. 32, e034 (2015). doi: 10.1017/pasa.2015.35http://doi.org/10.1017/pasa.2015.35
B.P. Abbott, R. Abbott, T.D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Phys. Rev. D 100, 024004 (2019). doi: 10.1103/PhysRevD.100.024004http://doi.org/10.1103/PhysRevD.100.024004
S. Caride, R. Inta, B.J. Owen et al., How to search for gravitational waves from r-modes of known pulsars. Phys. Rev. D 100, 064013 (2019). doi: 10.1103/PhysRevD.100.064013http://doi.org/10.1103/PhysRevD.100.064013
B. Haskell, K. Schwenzer, Gravitational waves from isolated neutron stars. arXiv:2104.03137 (2021).
T. Boztepe, E. Göğüs, T. Güver et al., Strengthening the bounds on the r-mode amplitude with X-ray observations of millisecond pulsars. Mon. Not. Roy. Astron. Soc. 498, 2734 (2020). doi: 10.1093/mnras/staa2503http://doi.org/10.1093/mnras/staa2503
Y.-B. Wang, X. Zhou, N. Wang et al., The r-mode instability windows of strange stars. Res. Astron. Astrophys. 19, 030 (2019). doi: 10.1088/1674-4527/19/2/30http://doi.org/10.1088/1674-4527/19/2/30
S. Chandrasekhar, Solutions of Two Problems in the Theory of Gravitational Radiation. Phys. Rev. Lett. 24, 611 (1970). doi: 10.1103/PhysRevLett.24.611http://doi.org/10.1103/PhysRevLett.24.611
J.L. Friedman, B.F. Schutz, Lagrangian perturbation theory of nonrelativistic fluids. Astrophys. J. 221, 937 (1978). doi: 10.1086/156098http://doi.org/10.1086/156098
J. Lin, R.-J. Lu, Signature of r-mode Gravitational-wave Emission in the X-Ray Afterglow of Short GRB 090510. Astrophys. J. 871, 160 (2019). doi: 10.3847/1538-4357/aaf72fhttp://doi.org/10.3847/1538-4357/aaf72f
D.D. Ofengeim, M.E. Gusakov, P. Haensel et al., Bulk viscosity in neutron stars with hyperon cores. Phys. Rev. D 100, 103017 (2019). doi: 10.1103/PhysRevD.100.103017http://doi.org/10.1103/PhysRevD.100.103017
D.D. Ofengeim, M.E. Gusakov, P. Haensel et al., R-mode stabilization in neutron stars with hyperon cores. Journal of Physics: Conference Series 1400, 022029 (2019). doi: 10.1088/1742-6596/1400/2/022029http://doi.org/10.1088/1742-6596/1400/2/022029
C.-M. Pi, S.-H. Yang, X.-P. Zheng, R-mode instability of strange stars and observations of neutron stars in LMXBs. Res. Astro. Astrophys. 15, 871 (2015). doi: 10.1088/1674-4527/15/6/009http://doi.org/10.1088/1674-4527/15/6/009
B. Haskell, N. Degenaar, W.C.G. Ho, Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations. Mon. Not. Roy. Astro. Soc. 424, 93 (2012). doi: 10.1111/j.1365-2966.2012.21171.xhttp://doi.org/10.1111/j.1365-2966.2012.21171.x
R. Bierkandt, C. Manuel, Bulk viscosity coefficients due to phonons and kaons in superfluid color-flavor locked quark matter. Phys. Rev. D 84, 023004 (2011). doi: 10.1103/PhysRevD.84.023004http://doi.org/10.1103/PhysRevD.84.023004
M.G. Alford, S. Mahmoodifar, K. Schwenzer, Viscous damping of r-modes: Small amplitude instability. Phys. Rev. D 85, 024007 (2012). doi: 10.1103/PhysRevD.85.024007http://doi.org/10.1103/PhysRevD.85.024007
M.G. Alford, K. Schwenzer, What the Timing of Millisecond Pulsars Can Teach us about Their Interior. Phys. Rev. Lett. 113, 251102 (2014). doi: 10.1103/PhysRevLett.113.251102http://doi.org/10.1103/PhysRevLett.113.251102
M.G. Alford, K. Schwenzer, Probing dense matter in compact star cores with radio pulsar data. Nucl. Phys. A 931, 740 (2014). doi: 10.1016/j.nuclphysa.2014.08.077http://doi.org/10.1016/j.nuclphysa.2014.08.077
X.-G. Huang, M. Huang, D.H. Rischke et al., Anisotropic hydrodynamics, bulk viscosities, and r-modes of strange quark stars with strong magnetic fields. Phys. Rev. D 81, 045015 (2010). doi: 10.1103/PhysRevD.81.045015http://doi.org/10.1103/PhysRevD.81.045015
K. Schwenzer, How long-range interactions tune the damping in compact stars. arXiv:1212.5242 (2012).
J.-F. Xu, Y.-A. Luo, L. Li et al., Bulk viscosity of strange quark matter in an enhanced perturbative QCD model. Phys. Rev. D 96, 063016 (2017). doi: 10.1103/PhysRevD.96.063016http://doi.org/10.1103/PhysRevD.96.063016
X.-P. Zheng, M. Kang, X.-W. Liu et al., Running coupling constant from lattice data and bulk viscosity of strange quark matter. Phys. Rev. C 72, 025809 (2005). doi: 10.1103/PhysRevC.72.025809http://doi.org/10.1103/PhysRevC.72.025809
X.-P. Zheng, X.-W. Liu, M. Kang et al., Bulk viscosity of strange quark matter in a density-dependent quark mass model and dissipation of the r mode in strange stars. Phys. Rev. C 70, 015803 (2004). doi: 10.1103/PhysRevC.70.015803http://doi.org/10.1103/PhysRevC.70.015803
X.-P. Zheng, S.-H. Yang, J.-R. Li et al., Bulk viscosity of interacting strange quark matter. Phys. Lett. B 548, 29 (2002). doi: 10.1016/S0370-2693(02)02840-Xhttp://doi.org/10.1016/S0370-2693(02)02840-X
A. Goyal, V. Gupta, Pragya et al., Bulk viscosity of strange quark matter. Z. Phys. A 349, 93 (1994). doi: 10.1007/BF01296338http://doi.org/10.1007/BF01296338
J.-F. Xu, D.-B. Kang, G.-X. Peng et al., Bulk viscosity for interacting strange quark matter and r-mode instability windows for strange stars. Chin. Phys. C 45, 015103 (2021). doi: 10.1088/1674-1137/abc0cdhttp://doi.org/10.1088/1674-1137/abc0cd
P.-C. Chu, L.-W Chen, Quark matter symmetry energy and quark stars. AstroPhys. J. 780, 135 (2014). doi: 10.1088/0004-637X/780/2/135http://doi.org/10.1088/0004-637X/780/2/135
H. Yu, D.-Q. Fang, Y.-G Ma, Investigation of the symmetry energy of nuclear matter. Nucl. Sci. Tech. 31, 61 (2020). doi: 10.1007/s41365-020-00766-xhttp://doi.org/10.1007/s41365-020-00766-x
S. Chakrabarty, Quark matter in a strong magnetic field. Phys. Rev. D 54, 1306 (1996). doi: 10.1103/PhysRevD.54.1306http://doi.org/10.1103/PhysRevD.54.1306
P.-C. Chu, L.-W. Chen, X. Wang, Quark stars in strong magnetic fields. Phys. Rev. D 90, 063013 (2014). doi: 10.1103/PhysRevD.90.063013http://doi.org/10.1103/PhysRevD.90.063013
P.-C. Chu, X.-H. Li, H.-Y. Ma et al., Quark matter and quark stars in strong magnetic fields at finite temperature within the confined-isospin-density-dependent mass model. Phys. Lett. B 778, 447 (2018). doi: 10.1016/j.physletb.2018.01.064http://doi.org/10.1016/j.physletb.2018.01.064
X.-J. Wen, S.-Z. Su, D.-H. Yang et al., Magnetized strange quark matter in a quasiparticle description. Phys. Rev. D 86, 034006 (2012). doi: 10.1103/PhysRevD.86.034006http://doi.org/10.1103/PhysRevD.86.034006
S.-S. Cui, G.-X. Peng, Z.-Y. Lu et al., Properties of color-flavor locked strange quark matter in an external strong magnetic field. Nucl. Sci. Tech. 26, 040503 (2015). doi: 10.13538/j.1001-8042/nst.26.040503http://doi.org/10.13538/j.1001-8042/nst.26.040503
C. Peng, G. X. Peng, C.-J. Xia et al., Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions. Nucl. Sci. Tech. 27, 98 (2016). doi: 10.1007/s41365-016-0095-5http://doi.org/10.1007/s41365-016-0095-5
C. Kouveliotou, U. D. Desai, T. L. Cline et al., A 2.2 Second Period in the 1984 August 3 Gamma-Ray Burst. Astrophys. J. 330, L101-L105 (1988). doi: 10.1086/185214http://doi.org/10.1086/185214
R. C. Duncan, C. Thompson, Formation of Very Strongly Magnetized Neutron Stars: Implications for Gamma-Ray Bursts. Astrophys. J. 392, L9-L13 (1992). doi: 10.1086/186413http://doi.org/10.1086/186413
E. J. Ferrer, V. de la Incera, J. P. Keith et al., Equation of state of a dense and magnetized fermion system. Phys. Rev. C 82, 065802 (2010). doi: 10.1103/PhysRevC.82.065802http://doi.org/10.1103/PhysRevC.82.065802
X. Zhou, X.P. Zheng, Non-leptonic Weak Interaction with Quark Matter in Magnetic Field. High Energy Physics and Nuclear Physics 31, 1003-1009 (2007).
J. D. Anand, V. K. Gupta, A. Goyal et al., Bulk viscosity of magnetized neutron star matter. J. Phys. G 27, 921-931 (2001). doi: 10.1088/0954-3899/27/4/315http://doi.org/10.1088/0954-3899/27/4/315
C. J. Xia, G. X. Peng, S. W. Chen et al., Thermodynamic consistency, quark mass scaling, and properties of strange matter. Phys. Rev. D 89, 105027 (2014). doi: 10.1103/PhysRevD.89.105027http://doi.org/10.1103/PhysRevD.89.105027
S. Chakrabarty, D. Bandyopadhyay, S. Pal, Weakly interacting quark matter in an ultrastrong magnetic field. Int. J. Mod. Phys. A 13, 295-314 (1998). doi: 10.1142/S0217751X98000135http://doi.org/10.1142/S0217751X98000135
X.-P. Zheng, X. Zhou, and X.-W. Liu, Non-leptonic weak interaction in magnetized quark matter. arXiv:astro-ph/0507390 (2005).
J. Madsen, Probing strange stars and color superconductivity by r-mode instabilities in millisecond pulsars. Phys. Rev. Lett. 85, 10 (2000). doi: 10.1103/PhysRevLett.85.10http://doi.org/10.1103/PhysRevLett.85.10
L. Bildsten, G. Ushomirsky, Viscous boundary-layer damping of r-modes in neutron stars. Astrophys. J. 529, L33-L36 (2000). doi: 10.1086/312454http://doi.org/10.1086/312454
N. Andersson, D.I. Jones, K.D. Kokkotas et al., r-Mode Runaway and Rapidly Rotating Neutron Stars. Astrophys. J. 534, L75-L78 (2000) doi: 10.1086/312643http://doi.org/10.1086/312643
J. Madsen, Intermediate mass strangelets are positively charged. Phys. Rev. Lett. 85, 4687-4690 (2000). doi: 10.1103/PhysRevLett.85.4687http://doi.org/10.1103/PhysRevLett.85.4687
X.-P. Zheng, S.-H. Yang, J.-R. Li, The critical rotation of strange stars and rapidly rotating pulsars. Astrophys. J. Lett. 585, L135-L138 (2003). doi: 10.1086/374370http://doi.org/10.1086/374370
L. Lindblom, G. Mendell, B.J. Owen, Second-order rotational effects on the r-modes of neutron stars. Phys. Rev. D 60, 064006 (1999). doi: 10.1103/PhysRevD.60.064006http://doi.org/10.1103/PhysRevD.60.064006
K.D. Kokkotas, N. Stergioulas, Analytic description of the r - mode instability in uniform density stars. Astron. Astrophys. 341, 110 (1999).
H. Heiselberg, C.J. Pethick, Transport and relaxation in degenerate quark plasmas. Phys. Rev. D 48, 2916 (1993). doi: 10.1103/PhysRevD.48.2916http://doi.org/10.1103/PhysRevD.48.2916
M.E. Gusakov, A.I. Chugunov, E.M. Kantor, Instability windows and evolution of rapidly rotating neutron stars. Phys. Rev. Lett. 112, 151101 (2014). doi: 10.1103/PhysRevLett.112.151101http://doi.org/10.1103/PhysRevLett.112.151101
P. Kaaret, Z. Prieskorn, J.J.M. In’t Zand et al., Evidence of 1122 Hz X-Ray Burst Oscillations from the Neutron Star X-Ray Transient XTE J1739-285. Astrophys. J. 657, L97-L100 (2007). doi: 10.1086/513270http://doi.org/10.1086/513270
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution