1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
E-mail address: wanghaijing@ihep.ac.cn (Haijing Wang),
yuany@ihep.ac.cn (Ye Yuan),
tangjy@ihep.ac.cn(Jingyu Tang)
Scan for full text
Hai-Jing Wang, Ye Yuan, Jing-Yu Tang, et al. Design of the upstream decay pipe window of the Long Baseline Neutrino Facility. [J]. Nuclear Science and Techniques 32(11):129(2021)
Hai-Jing Wang, Ye Yuan, Jing-Yu Tang, et al. Design of the upstream decay pipe window of the Long Baseline Neutrino Facility. [J]. Nuclear Science and Techniques 32(11):129(2021) DOI: 10.1007/s41365-021-00960-5.
The beam windows of high-energy beam lines are important, and it is sometimes difficult to design because it is necessary to ensure particle propagation with minimum disturbance and fulfill mechanical requirements at the same time. The upstream decay pipe window of the Long Baseline Neutrino Facility at Fermilab has an extremely large diameter (1.8 m), with a thickness of only 1.5 mm to separate the helium atmosphere in the decay pipe and the nitrogen atmosphere on the other side. Furthermore, the center of this dish-shaped window is expected to be a 200-mm-diameter beryllium (Be) dish welded to the outside aluminum alloy A6061, and this welded combination must withstand extreme conditions of a 2.4-MW, high-energy proton beam without leakage. These severe conditions make the design of this window an unprecedented challenge. This paper describes the static thermal-structural analyses based on which the structure has been optimized, as well as dynamic analyses for understanding the shockwave effects originating in the beam. After optimization, the maximum von Mises stresses in the window decreased significantly in both normal operation and accident cases, making our design very reasonable.
Decay pipe windowStructure optimizationDynamic analysesLong Baseline Neutrino Facility
Long-Baseline Neutrino Facility (LBNF)/DUNE Conceptual Design Report. September 29, 2017
Papadimitriou V., Ammigan K., JrAnderson J. et al., Design of the LBNF beamline. Fermilab-Conf-16-163-AD, 2017. arXiv:1704.04471
Heise J, The Sanford Underground Research Facility at Homestake, arXiv:1503.01112v2, doi: 10.1088/1742-6596/606/1/012015http://doi.org/10.1088/1742-6596/606/1/012015
Matthews S.M., Hall Crannell, O’Brien J.T. et al., A composite thin vacuum window for the CLAS photon tagger at Jefferson lab, Nucl. Instrum. Meth. A, 421 (1999) 23-30. doi: 10.1016/S0168-9002(98)00910-3http://doi.org/10.1016/S0168-9002(98)00910-3
Mapes M., Leonhardt W.J., Design of large aperture low mass vacuum windows. J. Vac. Sci. Technol. A, 11(4):1587-1592, doi: 10.1116/1.578509http://doi.org/10.1116/1.578509.
Zimmerman E.D., Use of the KL→3π0 decay as a tagged photon source to measure material thickness in a neutral kaon beam. Nucl. Instrum. Meth. A 426, 229-237 (1999). doi: 10.1016/S0168-9002(98)01424-7http://doi.org/10.1016/S0168-9002(98)01424-7
Harada M., Watanabe N., Konno C. et al., DPA calculation for Japanese spallation neutron source. J. Nucl. Mater. 343, 197-204 (2005). doi: 10.1016/j.jnucmat.2005.01.023http://doi.org/10.1016/j.jnucmat.2005.01.023
Wang H.J., Liu W.B., Qu H.M. et al., Thermal analysis and optimization of proton beam window for the CSNS. Chinese Phys. C 37 (7), 077001 (2013). doi: 10.1088/1674-1137/37/7/077001http://doi.org/10.1088/1674-1137/37/7/077001.
He Y., FEA of NuMI megawatt decay pipe US window and beam absorber. Report on TSD Topical Meeting, December 19, 2019, https://indico.fnal.gov/event/22729https://indico.fnal.gov/event/22729.
Snigirev A., Snigireva I., Kohn V.G. et al., On the requirements to the instrumentation for the new generation of the synchrotron radiation sources. Beryllium windows. Nucl. Instrum. Meth. A, 370, 634-640 (1996). doi: 10.1016/0168-9002(95)00849-7http://doi.org/10.1016/0168-9002(95)00849-7.
Xu Y., Xu M., Wang G.F. et al., Beam charge integration in external beam PIXE–PIGE analysis utilizing proton backscattering with an extraction window. Nucl. Sci. Tech. 27, 137 (2016) . doi: 10.1007/s41365-016-0131-5http://doi.org/10.1007/s41365-016-0131-5.
Boland M.A., Beryllium—important for national defense: U.S. Geological Survey Fact Sheet 2012–3056, 2 p, https://pubs.usgs.gov/fs/2012/3056/https://pubs.usgs.gov/fs/2012/3056/. [accessed 21 July 2021].
Simos N., Ludewig H., Kirk H. et al., Multi-MW accelerator target material properties under proton irradiation at Brookhaven National Laboratory linear isotope producer. Phys. Rev. Accel. Beams 21, 053001 (2018). doi: 10.1103/PhysRevAccelBeams.21.053001http://doi.org/10.1103/PhysRevAccelBeams.21.053001
Ammigan K., Bidhar S., Hurh P. et al., Thermal shock experiment of beryllium exposed to intense high energy proton beam pulses. Phys. Rev. Accel. Beams 22, 044501 (2019). doi: 10.1103/PhysRevAccelBeams.22.044501http://doi.org/10.1103/PhysRevAccelBeams.22.044501
He Y., NOvA target downstream be window. report on tsd topical meeting, January 11, 2018. https://indico.fnal.gov/event/16159/contributions/35944/https://indico.fnal.gov/event/16159/contributions/35944/. [accessed 21 July 2021].
Park B.-S., Cho Y.-S., Moon M.-S., Mechanical properties of the external beam window for the PEFP. J. Korean Phys. Soc. 54, 1961-1965 (2009). doi: 10.3938/jkps.54.1961http://doi.org/10.3938/jkps.54.1961
Odegard B.C., Kalin B.A., A review of joining techniques for plasma facing components in fusion reactors. J. Nucl. Mater. 233-237, 44-50 (1996). doi: 10.1016/S0022-3115(96)00303-0http://doi.org/10.1016/S0022-3115(96)00303-0
Contreras F., Trillo E., Murr A., Friction-stir welding of a beryllium-aluminum powder metallurgy alloy. J. Mater. Sci. 37, 89-99 (2002). doi: 10.1023/A:1013193708743http://doi.org/10.1023/A:1013193708743.
Lin Z., Lin J.P., Wang Y.L. et al., Analysis of condensation structure in a YAG laser welded Be/Al alloy. Journal of University of Science and Technology Beijing 25, 433-435 (2003). (in Chinese)
Papadimitriou V., Design of the LBNF Beamline, Report on 38th International Conference on High Energy Physics, Chicago, 2016. https://indico.fnal.gov/event/12571/contributions/14797/https://indico.fnal.gov/event/12571/contributions/14797/. [accessed 21 July 2021].
Reitzner S.D., Energy Deposition results in the upstream decay pipe window. https://docs.dunescience.org/cgi-bin/ShowDocument?docid=8552https://docs.dunescience.org/cgi-bin/ShowDocument?docid=8552. [accessed 6 July 2018].
ASME Boiler and Pressure Vessel Committee on Materials, 2013 ASME Boiler and Pressure Vessel Code II, Materials, Part D, Properties, Two Park Avenue, New York, 2013.
http://www.matweb.com/http://www.matweb.com/. [accessed 21 July 2021].
Wang H. J., Kang L., Qu H. et al., Material test of proton beam window for CSNS. Paper Presented at the 6th International Particle Accelerator Conference (Richmond, VA, USA,2015)
Ahmad N., Creep of metals. http://ocw.utm.my/file.php/160/edited_creep_part_1.pdfhttp://ocw.utm.my/file.php/160/edited_creep_part_1.pdf. [accessed 21 July 2021].
Komarov M.A., Guitarsky L.S., Welding of beryllium. Welding International, 29, 561-566 (2014). doi: 10.1080/09507116.2014.9524http://doi.org/10.1080/09507116.2014.9524
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution