1.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
2.China Institute of Atomic Energy, Beijing 102413, China
liuwg7@mail.sysu.edu.cn
Scan for full text
Jun Hui, Bao-Liang Zhang, Tao Liu, et al. Effects of impurity elements on SiC grain boundary stability and corrosion. [J]. Nuclear Science and Techniques 32(11):125(2021)
Jun Hui, Bao-Liang Zhang, Tao Liu, et al. Effects of impurity elements on SiC grain boundary stability and corrosion. [J]. Nuclear Science and Techniques 32(11):125(2021) DOI: 10.1007/s41365-021-00963-2.
Grain boundaries (GBs) have critical influences on the stability and properties of various materials. In this study, first-principles calculations were performed to determine the effects of four metallic impurities (Ni, Al, Bi, and Pb) and three nonmetallic impurities (H, O, and N) on the GBs of silicon carbide (SiC), using the Σ5(210) GBs as models. The GB energy and segregation energy (SE) were calculated to identify the effects of impurities on the GB stability. Electronic interactions considerably influenced the bonding effects of SiC. The formation of weak bonds resulted in the corrosion and embrittlement of GBs. The co-segregation of Bi, Pb, and O was also investigated in detail.
SiCFirst-principles calculationGrain boundaryImpurity atomCo-segregation.
Shi X., Li B., Liu H. et al., The corrosion resistance mechanisms of the Cr-coated SiC in molten Na2SO4 salt: strengthened boundaries and protective scales. Corros. Sci. 185, 109421 (2021). doi: 10.1016/j.corsci.2021.109421http://doi.org/10.1016/j.corsci.2021.109421
Chen S.L., He X.J., Yuan C.X. et al., Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors. Nucl. Sci. Tech. 31, 32 (2020). https://link.springer.com/article/10.1007/s41365-020-0741-9https://link.springer.com/article/10.1007/s41365-020-0741-9
Cluzel C., Baranger E.,Ladevèze P. et al., Mechanical behavior and lifetime modelling of self-healing ceramic-matrix composites subjected to thermo-mechanical loading in air. Compos. Part. A, 40, 976-984 (2009). doi: 10.1016/j.compositesa.2008.10.020http://doi.org/10.1016/j.compositesa.2008.10.020
Tan Z. X., Cai J. J., Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors. Nucl. Sci. Tech. 30, 48 (2019). https://link.springer.com/article/10.1007%2Fs41365-019-0575-5https://link.springer.com/article/10.1007%2Fs41365-019-0575-5
Kondo S., Lee M.,Hinoki T.et al., Effect of irradiation damage on hydrothermal corrosion of SiC. J. Nucl. Mater. 464, 36-42 (2015). doi: 10.1016/j.jnucmat.2015.04.034http://doi.org/10.1016/j.jnucmat.2015.04.034
Wang B., Zhang C., Ma X. et al., Key problems on the mechanical behavior of nuclear materials and structures of pressured water reactors. Sci. Sin. Phys. Mech. Astron. 49, 114602 (2019). doi: 10.1360/SSPMA-2019-0113http://doi.org/10.1360/SSPMA-2019-0113
Kondo S., Mouri S.,Hyodo Y. et al., Role of irradiation-induced defects on SiC dissolution in hot water. Corros. Sci. 112, 402-407 (2016). doi: 10.1016/j.corsci.2016.08.007http://doi.org/10.1016/j.corsci.2016.08.007
Kondo S., Seki K.,Maeda Y. et al., Contribution of dangling-bonds to polycrystalline SiC corrosion. Scripta. Mater. 188, 6-9 (2020). doi: 10.1016/j.scriptamat.2020.07.001http://doi.org/10.1016/j.scriptamat.2020.07.001
Parish C.M., Terrani K.A.,Kim Y.J.et al., Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments. J. Eur. Ceram. Soc. 37, 1261-1279 (2017). doi: 10.1016/j.jeurceramsoc.2016.11.033http://doi.org/10.1016/j.jeurceramsoc.2016.11.033
Doyle P. J., Zinkle S., Raiman S. S., Hydrothermal corrosion behavior of CVD SiC in high temperature water. J. Nucl. Mater. 539, 152241 (2020). doi: 10.1016/j.jnucmat.2020.152241http://doi.org/10.1016/j.jnucmat.2020.152241
Özkan S., Hapç G.,Orhan G. et al., Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties. Surf. Coat. Technol. 232, 734-741 (2013). doi: 10.1016/j.surfcoat.2013.06.089http://doi.org/10.1016/j.surfcoat.2013.06.089
Zarghami V., Ghorbani M., Alteration of corrosion and nano mechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings. J. Alloy. Compd. 598, 236-242 (2014). doi: 10.1016/j.jallcom.2014.01.220http://doi.org/10.1016/j.jallcom.2014.01.220
Kondo T.M., Kondo M., Corrosion resistance of ceramics SiC and Si3N4 in flowing lead-bismuth eutectic. Prog. Nucl. Energ, 53, 1061-1065 (2011). doi: 10.1016/j.pnucene.2011.04.023http://doi.org/10.1016/j.pnucene.2011.04.023
He L.Y., Li G.C., Xia S.P. et al., Effect of 37Cl enrichment on neutrons in a Molten Chloride Salt Fast Reactor. Nucl. Sci. Tech. 31, 27 (2020). doi: 10.1007/s41365-020-0740-xhttp://doi.org/10.1007/s41365-020-0740-x
Tu R., Liu Q., Li Y. et al., First principles calculations for iodine atom diffusion in SiC with point defects. Comp. Mater. Sci. 142, 427-436 (2018). doi: 10.1016/j.commatsci.2017.10.025http://doi.org/10.1016/j.commatsci.2017.10.025
Shrader D., Szlufarska L.,Morgan D., Cs diffusion in cubic silicon carbide. J. Nucl. Mater. 421, 89-96 (2012). doi: 10.1016/j.jnucmat.2011.11.051http://doi.org/10.1016/j.jnucmat.2011.11.051
Shrader D., Khalil S.M.,Gerczak T.et al., Ag diffusion in cubic silicon carbide. J. Nucl. Mater. 408, 257-271 (2011). doi: 10.1016/j.jnucmat.2010.10.088http://doi.org/10.1016/j.jnucmat.2010.10.088
Zhang P.F., Zhang Y.L., Gai W. et al., Oxidation behaviour of SiC ceramic coating for C/C composites prepared by pressure-less reactive sintering in wet oxygen: Experiment and first-principle simulation. Ceram. Int. 47, 15337-15348 (2021). doi: 10.1016/j.ceramint.2021.02.099http://doi.org/10.1016/j.ceramint.2021.02.099
Qing P., Chen N.J., Skerjanc W.F. et al., Reveal the fast and charge-insensitive lattice diffusion of silver in cubic silicon carbide via first-principles calculations. 170, 109190 (2019). doi: 10.1016/j.commatsci.2019.109190http://doi.org/10.1016/j.commatsci.2019.109190
Lillo T. M., Rooyen I. J., Influence of SiC GB character on fission product transport in irradiated TRISO fuel. J. Nuclear. Mater. 473, 83-92 (2016). doi: 10.1016/j.jnucmat.2016.01.040http://doi.org/10.1016/j.jnucmat.2016.01.040
Lara A., Muñoz A., Castillo-Rodríguez M. et al., High-temperature compressive creep of spark-plasma sintered additive-free polycrystalline β-SiC. J. Eur. Ceram. Soc. 32, 3445-3451 (2012). doi: 10.1016/j.jeurceramsoc.2012.04.041http://doi.org/10.1016/j.jeurceramsoc.2012.04.041
Wei B., Zhou J., Yao Z. et al., The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC, Ceram. Int. 46, 5788-5798 (2020). doi: 10.1016/j.ceramint.2019.11.029http://doi.org/10.1016/j.ceramint.2019.11.029
Koyanagi T., Katoh Y., Hinoki T. et al., Progress in development of SiC-based joints resistant to neutron irradiation. J. Eur. Ceram. Soc. 40, 1023-1034 (2020). doi: 10.1016/j.jeurceramsoc.2019.10.055http://doi.org/10.1016/j.jeurceramsoc.2019.10.055
Huang Z.F., Chen F., Shen Q. et al., Combined effects of nonmetallic impurities and planned metallic dopants on GB energy and strength, Acta. Mater. 166, 113-125 (2019). doi: 10.1016/j.actamat.2018.12.031http://doi.org/10.1016/j.actamat.2018.12.031
Huang Z.F., Chen F., Shen Q. et al., Uncovering the influence of common nonmetallic impurities on the stability and strength of a Σ5 (310) GB in Cu. Acta. Mater. 148, 110-122 (2018). doi: 10.1016/j.actamat.2018.01.058http://doi.org/10.1016/j.actamat.2018.01.058
Scheiber D., Prabitz K., The influence of alloying on Zn liquid metal embrittlement in steels. Acta. Mater. 195, 750-760 (2020). doi: 10.1016/j.actamat.2020.06.001http://doi.org/10.1016/j.actamat.2020.06.001
Razmpoosh M.H., DiGiovanni C., Zhou Y.N. et al., Pathway to understand liquid metal embrittlement (LME) in Fe-Zn couple: From fundamentals toward application. Prog. Mater. Sci. 29, 100798 (2021). doi: 10.1016/j.pmatsci.2021.100798http://doi.org/10.1016/j.pmatsci.2021.100798
Liang H., Yao X., Zhang J.X. et al., The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC. J. Euro. Ceram. Soc. 34, 2865-2874 (2014). doi: 10.1016/j.jeurceramsoc.2014.03.029http://doi.org/10.1016/j.jeurceramsoc.2014.03.029
Tan L., Allena T.R., Hunn J.D. et al., EBSD for microstructure and property characterization of the SiC coating in TRISO fuel particles. J. Nuclear. Maters. 372, 400-404 (2008). doi: 10.1016/j.jnucmat.2007.04.048http://doi.org/10.1016/j.jnucmat.2007.04.048
Xu S., Li X., Zhao Y. et al., Micromechanical properties and microstructural evolution of Amosic-3 SiC/SiC composites irradiated by silicon ions. J. Eur. Ceram. Soc. 8, 2811-2820 (2020). doi: 10.1016/j.jeurceramsoc.2020.02.023http://doi.org/10.1016/j.jeurceramsoc.2020.02.023
Li B., Liu H., Shen T. et al., Irradiation induced microstructure damage in He-irradiated 3C-SiC at 1000. J. Eur. Ceram. Soc. 40, 1014-1022 (2019). doi: 10.1016/j.jeurceramsoc.2019.11.026http://doi.org/10.1016/j.jeurceramsoc.2019.11.026
Detor A., Schuh C., GB segregation chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni-W system. Acta. Mater. 55, 4221-4232 (2007). doi: 10.1016/j.actamat.2007.03.024http://doi.org/10.1016/j.actamat.2007.03.024
Jina K., Lu C., Wang L.M. et al., Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. 119, 65-70 (2016). doi: 10.1016/j.scriptamat.2016.03.030http://doi.org/10.1016/j.scriptamat.2016.03.030
Garner F.A., Toloczko M.B., Sencer B.H., Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J. Nucl. Mater. 276, 123-142 (2000). doi: 10.1016/S0022-3115(99)00225-1http://doi.org/10.1016/S0022-3115(99)00225-1
Wang L.M., Dodd R.A., Kulcinski G.L. et al., Effects of 14 MeV nickel ion irradiation on nickel-copper alloys observed in cross-section. J. Nucl. Mater. 155-157, 1241-1248 (1988). doi: 10.1016/0022-3115(88)90504-1http://doi.org/10.1016/0022-3115(88)90504-1
Chen G., Lei Y., Zhu Q. et al., Corrosion behavior of CLAM steel weld bead in flowing Pb-Bi at 550 °C. J. Nucl. Mater. 515, 187-198 (2018). doi: 10.1016/j.jnucmat.2018.12.038http://doi.org/10.1016/j.jnucmat.2018.12.038
Baranov P.G., Bundakova A.P., Soltamova A.A. et al., Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011). doi: 10.1103/PhysRevB.83.125203http://doi.org/10.1103/PhysRevB.83.125203
Weber J.R., Koehl W.F., Varley J.B. et al., Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513-8518 (2010). doi: 10.1073/pnas.1003052107http://doi.org/10.1073/pnas.1003052107
Loewen E.P., Tokuhiro A.T., Status of research and development of the lead alloy cooled fast reactor, J. Nucl. Sci. Technol. 40, 614-627 (2003). doi: 10.1080/18811248.2003.9715398http://doi.org/10.1080/18811248.2003.9715398
Lou B.S., Yen C.A., Chen Y. et al., Effects of processing parameters on the adhesion and corrosion resistance of oxide coatings grown by plasma electrolytic oxidation on AZ31 magnesium alloys. J. Mater. Sci. Tech. 10, 1355-1371 (2021). doi: 10.1016/j.jmrt.2020.12.108http://doi.org/10.1016/j.jmrt.2020.12.108
Lin L., Chen Y., Hua L. et al., Electronic structures and ferromagnetism of 3C-SiC doped with (Fe, Co) double-impurities by first-principles calculations. Mat. Sci. Semicon. Proc. 129, 105779 (2021). doi: 10.1016/j.mssp.2021.105779http://doi.org/10.1016/j.mssp.2021.105779
Zhang P., Zhang Y., Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculation. Mater. Today. Commun. 26, 102072 (2021). doi: 10.1016/j.mtcomm.2021.102072http://doi.org/10.1016/j.mtcomm.2021.102072
Li B., Liu H., Shen T. et al., Irradiation-induced microstructure damage in He-irradiated 3C-SiC at 1000℃. J. Eur. Cer. Soc. 40, 1014-1022 (2019). doi: 10.1016/j.jeurceramsoc.2019.11.026http://doi.org/10.1016/j.jeurceramsoc.2019.11.026
Hui J., Liu W., Wang B., Theoretical study of the effects of alloying elements on Cu nanotwins. Sci. China-Phys. Mech. Astron. 63, 104612 (2020). https://link.springer.com/journal/11433https://link.springer.com/journal/11433
Hui J., Zhang X.Y., Liu W. et al., First-principles study of de-twinning in a FCC alloy. J. Sol. State Chem. 293, 121765 (2021). doi: 10.1016/j.jssc.2020.121765http://doi.org/10.1016/j.jssc.2020.121765
Kresse G., Furthmuller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169-11186 (1996). https://journals.aps.org/prb/issues/54/16https://journals.aps.org/prb/issues/54/16
Kohn W., Sham L.J, Self-consistent equations including exchange and correlation effects. Phys. Rev. B. 140, A1133 (1965). https://journals.aps.org/pr/issues/140/4Ahttps://journals.aps.org/pr/issues/140/4A
Blöchl P.E., Projector augmented-wave method. Phys. Rev. B. Condens. Matter 50, 17953-17979 (1994). https://journals.aps.org/prb/issues/50/24https://journals.aps.org/prb/issues/50/24
Gordy W., Thomas W.J.O., Electronegativities of the elements. J. Chem. Phys. 24, 439-444 (1956). doi: 10.1063/1.1742493http://doi.org/10.1063/1.1742493
Fan T. W., Wang Z.P., Lin J.J. et al., First-principles predictions for stabilizations of multilayer nanotwins in Al alloys at finite temperatures. J. Alloy. Comp. 783, 765-771 (2019). doi: 10.1016/j.jallcom.2018.12.314http://doi.org/10.1016/j.jallcom.2018.12.314
Kumar A., Wang J., Tomé C.N. et al., First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta. Mater. 85, 144-154 (2015). doi: 10.1016/j.actamat.2014.11.015http://doi.org/10.1016/j.actamat.2014.11.015
Wang Q.Y., Wang C., Molecular dynamics analysis of the thermal conductivity of SiC grain boundaries under irradiation conditions. J. Mater. Sci. Eng. 34, 133-136 (2016). doi: 10.14136/j.cnki.issn1673-2812.2016.01.025http://doi.org/10.14136/j.cnki.issn1673-2812.2016.01.025
Dinda S., Warke W.R., The effect of grain boundary segregation on liquid metal induced embrittlement of steel. Mater. Sci. Eng. 24, 199-208 (1976). doi: 10.1016/0025-5416(76)90113-0http://doi.org/10.1016/0025-5416(76)90113-0
Vsianska M., Šob M., The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 56, 817-840 (2011). doi: 10.1016/j.pmatsci.2011.01.008http://doi.org/10.1016/j.pmatsci.2011.01.008
He C., Li Z., Chen H. et al., Unusual solute segregation phenomenon in coherent twin boundaries. Nat. Commun. 12, 722 (2021). doi: 10.1038/s41467-021-21104-8http://doi.org/10.1038/s41467-021-21104-8
Zhao X.J., Chen H.W., Wilson N. et al., Direct observation and impact of cosegregated atoms in magnesium having multiple alloying elements. Nat. Commun. 10, 3243 (2019). https://www.nature.com/articles/s41467-019-10921-7#article-infohttps://www.nature.com/articles/s41467-019-10921-7#article-info
Zhu Y.M., Xu S.W., Nie J.F. et al., {1011} Twin boundary structures in a Mg–Gd alloy. Acta. Mater, 143, 1-12 (2018). doi: 10.1016/j.actamat.2017.09.067http://doi.org/10.1016/j.actamat.2017.09.067
Zhou H., Cheng G.M., Ma X.L. et al., Effect of Ag on interfacial segregation in MgGdYAgZr alloy. Acta. Mater. 95, 20-29 (2015). doi: 10.1016/j.actamat.2015.05.020http://doi.org/10.1016/j.actamat.2015.05.020
Chen X.F., Xiao L.R., Ding Z.G. et al., Atomic segregation at twin boundaries in a MgAg alloy. Scr. Mater. 178, 193-197 (2020). doi: 10.1016/j.scriptamat.2019.11.025http://doi.org/10.1016/j.scriptamat.2019.11.025
Pauling L., Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542-553 (1947). https://core.ac.uk/display/211380396https://core.ac.uk/display/211380396
Kueck A.M., He D.J., Two-stage sintering inhibits abnormal grain growth during beta to alpha transformation in SiC. J. Euro. Ceram. Soc. 28, 2259-2264 (2008). doi: 10.1016/j.jeurceramsoc.2008.01.026http://doi.org/10.1016/j.jeurceramsoc.2008.01.026
Shao Q.Q., Liu L.H., Fan T.W. et al., Effects of solute concentration on the stacking fault energy in copper alloys at finite temperatures. J. Alloys. Comp. 726, 601-607 (2017). doi: 10.1016/j.jallcom.2017.07.332http://doi.org/10.1016/j.jallcom.2017.07.332
Weinberg F., Grain boundaries in metals. At the Clarendon Press. 8, 105-128 (1959). doi: 10.1016/0502-8205(59)90014-0http://doi.org/10.1016/0502-8205(59)90014-0
White C.L., Coghlan W.A., The spectrum of binding energies approach to GB segregation. Metall. Trans. A. 8, 1403-1412 (1977). https://link.springer.com/article/10.1007/BF02642853#article-infohttps://link.springer.com/article/10.1007/BF02642853#article-info
Huber L., Rottler J., Militzer M., Atomistic simulations of the interaction of alloying elements with grain boundaries in Mg. Acta. Mater. 80, 194-204 (2014). doi: 10.1016/j.actamat.2014.07.047http://doi.org/10.1016/j.actamat.2014.07.047
Garg P., Adlakha I., Solanki K.N.. Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study. Acta. Mater. 153, 327-335 (2018). doi: 10.1016/j.actamat.2018.05.014http://doi.org/10.1016/j.actamat.2018.05.014
Hui J., Liu W., Wang B., Quasi-gradient variation of microstructures and properties of Cu–Sn alloy along the thickness direction under cold spinning. J. Alloy. Comp. 831, 154701 (2020). doi: 10.1016/j.jallcom.2020.154701http://doi.org/10.1016/j.jallcom.2020.154701
Janisch R., Elsässer C., Segregated light elements at grain boundaries in niobium and molybdenum. Phys. Rev. B. 67, 2209-2219 (2003). https://journals.aps.org/prb/issues/67/22https://journals.aps.org/prb/issues/67/22
Ser C.T., Mak A.M., Wejrzanowski T. et al., Designing piezoresistive materials from first-principles: Dopant effects on 3C-SiC. Comp. Mater. Sci. 186, 110040 (2021). doi: 10.1016/j.commatsci.2020.110040http://doi.org/10.1016/j.commatsci.2020.110040
Luo M., Xu Y.E., Song Y.X. et al., Impact of isotropic strain on electronic and magnetic properties of O-adsorbed SiC monolayer. Mat. Sci. Semicon. Pro. 83, 27-32 (2018). doi: 10.1016/j.mssp.2018.04.005http://doi.org/10.1016/j.mssp.2018.04.005
Lejcek P., Grain boundary segregation in metals. Springer Series in Materials Science 136, 1-239 (2010). doi: 10.1007/978-3-642-12505-8http://doi.org/10.1007/978-3-642-12505-8
Scheiber D., Romaner L., Pippan R. et al., Impact of solute-solute interactions on grain boundary segregation and cohesion in molybdenum. Phys. Rev. Mater. 2, 93609 (2018). https://journals.aps.org/prmaterials/issues/2/9https://journals.aps.org/prmaterials/issues/2/9
Hui J., Yang G., Liu M. et al., Effects of alloy compositions on hydrogen behaviors at a nickel grain boundary and a coherent twin boundary. Inter. J. Hydr. Energy. 45, 10951-10961 (2020). doi: 10.1016/j.ijhydene.2020.02.008http://doi.org/10.1016/j.ijhydene.2020.02.008
Li G., Yang Z., Yu C. et al., Influences of 7Li Enrichment on Th-U Fuel Breeding for an Improved Molten Salt Fast Reactor (IMSFR). Nucl. Sci. Tech, 28, 97 (2017). https://link.springer.com/journal/41365https://link.springer.com/journal/41365
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution