1.State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
2.Renji Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
3.Shanghai Ninth People’s Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
4.Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
wwqu@suda.edu.cn
huliang@suda.edu.cn
wrs16@suda.edu.cn
Scan for full text
Yue Yang, Cui-Ping Yang, Jie Xin, et al. Performance of a plastic scintillation fiber dosimeter based on different photoelectric devices. [J]. Nuclear Science and Techniques 32(11):120(2021)
Yue Yang, Cui-Ping Yang, Jie Xin, et al. Performance of a plastic scintillation fiber dosimeter based on different photoelectric devices. [J]. Nuclear Science and Techniques 32(11):120(2021) DOI: 10.1007/s41365-021-00965-0.
The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal. Its features directly determine the overall performance of the dosimeter. For a plastic scintillation fiber dosimeter (PSFD) with a current readout mode, systematic studies of the stability and light-dose response were performed for the photomultiplier tube (PMT), silicon photomultiplier (SiPM), avalanche photodiode (APD), and photodiode (PD). The temperature stability, long-term stability, repeatability, signal-to-noise ratio (SNR), and current dose response of the PSFD with the abovementioned photoelectric devices were studied using a pulsed LED light source and the Small Animal Radiation Therapy platform. An exponential relationship between the dark/net current and temperature was obtained for all the devices. It is shown that the APD is the most sensitive device to temperature, with a current dependence on temperature reaching 6.5%℃,-1, at room temperature, whereas for the other devices this dependence is always ,&,lt;0.6%℃,-1,. In terms of long-term stability, the net current of PD can change by up to 4% when working continuously for 8 h and 2% when working intermittently for 32 h, whereas for the other devices, the changes are all ,&,lt;1%. For the dose response, the PMT and SiPM exhibit excellent linear responses and SNRs within the range of 0.1–60 Gy/min. For the PSFD with a current readout mode, the performance of the PMT and SiPM is concluded to be better than that of the other devices in the study. In particular, the SiPM, which has a compact size, low bias voltage, and antimagnetic interference, has great advantages for further applications.
Photoelectric devicePlastic scintillation fiber dosimeter (PSFD)Current readoutDose response
Essers M., Mijnheer B., In vivo dosimetry during external photon beam radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 43(2), 245-259 (1999). doi: 10.1016/S0360-3016(98)00341-1http://doi.org/10.1016/S0360-3016(98)00341-1
Beddar A.S., Plastic scintillation dosimetry and its application to radiotherapy. Radiat. Meas. 41, S124-S133 (2006). doi: 10.1016/j.radmeas.2007.01.002http://doi.org/10.1016/j.radmeas.2007.01.002
Fonseca G.P., Johansen J.G., Smith R.L. et al., In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys. Imaging Radiat. Oncol.16, 1-11 (2020). doi: 10.1016/j.phro.2020.09.002http://doi.org/10.1016/j.phro.2020.09.002
Celi S., Costa E., Wessels C. et al., EPID based in vivo dosimetry system: clinical experience and results. J. Appl. Clin. Med. Phys. 17, 262-276 (2016). doi: 10.1120/jacmp.v17i3.6070http://doi.org/10.1120/jacmp.v17i3.6070
Parodi K., Polf J.C., In-vivo range verification in particle therapy. Med. Phys.62, L41 (2017). doi: 10.1002/mp.12960http://doi.org/10.1002/mp.12960
Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy. AAPM REPORT NO. 87 doi: 10.37206/881http://doi.org/10.37206/881
Consorti R., Petrucci A., Fortunato F. et al., In vivo dosimetry with MOSFETs: Dosimetric characterization and first clinical results in intraoperative radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63(3), 952-960 (2005). doi: 10.1016/j.ijrobp.2005.02.049http://doi.org/10.1016/j.ijrobp.2005.02.049
Chai L., Chen L., Yang C.P. et al., Evaluation of CdZnTe spectrometer performance in measuring energy spectra during interventional radiology procedure. Nucl. Sci. Tech. 30, 137 (2019). doi: 10.1007/s41365-019-0661-8http://doi.org/10.1007/s41365-019-0661-8
Beddar A.S., Mackie T.R., Attix F.H., Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements. Phys. Med. Biol. 37(10), 1901 (1992). doi: 10.1088/0031-9155/37/10/007http://doi.org/10.1088/0031-9155/37/10/007
Berra A., Conti V., Lietti D. et al., A SiPM based real time dosimeter for radiotherapic beams. Nucl. Instrum. Methods Phys. Res. A 773, 72-80 (2015). doi: 10.1016/j.nima.2014.11.001http://doi.org/10.1016/j.nima.2014.11.001
Berra A., Ferri A., Novati C. et al., Single and multichannel scintillating fiber dosimeter for radiotherapic beams with SiPM readout. Nucl. Instrum. Methods Phys. Res. A 838, 1-11 (2016). doi: 10.1016/j.nima.2016.08.068http://doi.org/10.1016/j.nima.2016.08.068
De Gerone M., Dussoni S., Gatti F. et al.,Development and characterization of scintillating fiber-APD-based detector. Nucl. Instrum. Methods Phys. Res. A 610, 218-221 (2009). doi: 10.1016/j.nima.2009.05.159http://doi.org/10.1016/j.nima.2009.05.159
Rego F., Peralta L., da Concei Abreu M., A Scintillating Fiber Dosimeter for Radiology and Brachytherapy with photodiode readout. arXiv:1109.6545v1 (2011)
Therriault-Proulx F., Briere T.M., Mourtada F. et al., A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy. Med. Phys. 38, 2542-2551 (2011). doi: 10.1118/1.3572229http://doi.org/10.1118/1.3572229
O’Keeffe S., McCarthy D., Woulfe P. et al., A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Med. Phys. 88, 1050 (2015). doi: 10.1259/bjr.20140702http://doi.org/10.1259/bjr.20140702
Boivin J., Beddar S., Guillemette M. et al., Systematic evaluation of photodetector performance for plastic scintillation dosimetry. Med. Phys. 42, 6211-20 (2015). doi: 10.1118/1.4931979http://doi.org/10.1118/1.4931979
Madden L., Archer J., Li E.B. et al., Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs. Phys. Med. 54, 131-136 (2018). doi: 10.1016/j.ejmp.2018.10.007http://doi.org/10.1016/j.ejmp.2018.10.007
Yang C.P., Xin J., Zhou D.D. et al., Development of a SiPM-based practical plastic scintillation fiber dosimeter. Nuclear Techniques 42, 100402 (2019). doi: 10.11889/j.0253-3219.2019.hjs.42.100402http://doi.org/10.11889/j.0253-3219.2019.hjs.42.100402 (in Chinese)
Araujo H.M., Bewick A., Davidge D. et al., Low-temperature study of 35 photomultiplier tubes for the ZEPLIN III experiment. Nucl. Instrum. Methods Phys. Res. A 521, 407-415 (2004). doi: 10.1016/j.nima.2003.10.094http://doi.org/10.1016/j.nima.2003.10.094
Lyashenko A., Nguyen T., Snyder A. et al., Measurement of the absolute Quantum Efficiency of Hamamatsu model R11410-10 photomultiplier tubes at low temperatures down to liquid xenon boiling point. J. Instrum. 9, P11021-P11021 doi: 10.1088/1748-0221/9/11/P11021http://doi.org/10.1088/1748-0221/9/11/P11021(2014)
Otte A.N., Garcia D., Nguyen T. et al., Characterization of three high efficiency and blue sensitive silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. A 846, 106-125 (2017). doi: 10.1016/j.nima.2016.09.053http://doi.org/10.1016/j.nima.2016.09.053
Yang L., NDzhosyuk S., MGabrielse J. et al., Performance of a large-area avalanche photodiode at low temperature for scintillation detection. Nucl. Instrum. Methods Phys. Res. A 508, 388-393 (2003). doi: 10.1016/S0168-9002(03)01665-6http://doi.org/10.1016/S0168-9002(03)01665-6
Yin Y., Lambert J., McKenzie D.R. et al., Real-time monitoring and diagnosis of scintillation dosimeters using an ultraviolet light emitting diode. Phys. Med. Biol. 53, 2303 (2008). doi: 10.1088/0031-9155/53/9/007http://doi.org/10.1088/0031-9155/53/9/007
Rosales H.M.L., Duguay-Drouin P., Archambault L. et al., Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy. Med. Phys. 46, 2412-2421 (2019). doi: 10.1002/mp.13498http://doi.org/10.1002/mp.13498
Seibert J.A., The Essential Physics of Medical Imaging. (Williams & Wilkins, 2013).
0
Views
2
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution