1.Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
yuncheng_han@163.com
Scan for full text
Lei Ren, Yun-Cheng Han, Jia-Chen Zhang, et al. Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production. [J]. Nuclear Science and Techniques 32(11):123(2021)
Lei Ren, Yun-Cheng Han, Jia-Chen Zhang, et al. Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production. [J]. Nuclear Science and Techniques 32(11):123(2021) DOI: 10.1007/s41365-021-00968-x.
The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source. The general methods to improve the utilization of neutrons include moderating, multiplying, and reflecting neutrons, which ignores the use of neutrons that backscatter to the source direction. In this study, a stacked structure was formed by assembling the multiplier and the low-enriched uranium (LEU) solution to enable the full use of neutrons that backscatter to the source direction and further improve the utilization of neutrons. A model based on SuperMC was used to evaluate the neutronics and safety behavior of the subcritical system, such as the neutron effective multiplication factor, neutron energy spectrum, medical isotope yield, and heat deposition. Based on the calculation results, when the intensity of the neutron source was 5×10,13, n/s, the optimized design with a stacked structure could increase the yield of ,99,Mo to 182 Ci/day, which is approximately 16% higher than that obtained with a single-layer structure. The inlet H,2,O coolant velocity of 1.0 m/s and initial temperature of 20 °C were also found to be sufficient to prevent boiling of the fuel solution.
Neutronics analysisStacked structure99Mo yieldSubcritical systemD-T neutron source
Noorden R., The medical testing crisis. Nature, 504, 202-204 (2013). doi: 10.1038/504202ahttp://doi.org/10.1038/504202a
Qaim S., Sudár S., Scholten B. et al., Evaluation of excitation functions of 100Mo (p, d+pn) 99Mo and 100Mo (p, 2n) 99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl, Radiat. Isotope 85, 101-113 (2014). doi: 10.1016/j.apradiso.2013.10.004http://doi.org/10.1016/j.apradiso.2013.10.004
Filzen L., Ellingson L., Paulsen A. et al., Potential ways to address shortage situations of Mo-99/Tc-99m. J. Nucl. Med. Technol. 45, 283-295 (2017). doi: 10.2967/jnmt.116.185454http://doi.org/10.2967/jnmt.116.185454
Deng Q., Li M., Cheng Z., Application of 99Mo production through Medical Isotope Production Reactor (MIPR). Nuclear Science and Engineering. 26, 165-167 (2006). (in Chinese)
Pillai M., Dash A., Knapp F., Sustained availability of 99mTc: Possible paths forward. J. Nucl. Med. 54, 313-323 (2013). doi: 10.2967/jnumed.112.110338http://doi.org/10.2967/jnumed.112.110338
Youker A., Chemerisov S., Kalensky M. et al., A solution-based approach for Mo-99 production: Considerations for nitrate versus sulfate media. Sci. Technol. Nucl. Ins. 203, 195-203 (2013). doi: 10.1155/2013/402570http://doi.org/10.1155/2013/402570
Gholamzadeh Z., Feghhi S., Mirvakili S. et al., Computational investigation of 99Mo, 89Sr, and 131I production rates in a subcritical UO2(NO3)2 aqueous solution reactor driven by a 30-MeV proton accelerator. Nucl. Eng. Technol. 47, (2015). doi: 10.1016/j.net.2015.08.004http://doi.org/10.1016/j.net.2015.08.004
Rahmani F., Khotbesara A., Ghasemi F., Feasibility study of Mo-99 production using high-power electron linac: nuclear and thermal-mechanical analysis based on photo neutron interaction. Radiat. Phys. Eng. 2, 9-17 (2021). doi: 10.22034/RPE.2021.252856.1026http://doi.org/10.22034/RPE.2021.252856.1026
Lee S., Lee S., Kang M. et al., Development of fission 99Mo production process using HANARO. Nucl. Eng. Technol. 52, 1517-1523 (2019). doi: 10.1016/j.net.2019.12.019http://doi.org/10.1016/j.net.2019.12.019
Youker A., Chemerisov S., Tkac P. et al., Fission produced 99Mo without a nuclear reactor. J. Nucl. Med. 58, 514-517 (2016). doi: 10.2967/jnumed.116.181040http://doi.org/10.2967/jnumed.116.181040
Nagai Y., Hatsukawa Y., Production of 99Mo for nuclear medicine by 100Mo(n,2n) 99Mo. Journal of the Physical Society of Japan. 78(3), 201-205 (2009). doi: 10.1143/jpsj.78.033201http://doi.org/10.1143/jpsj.78.033201
Artun O., Investigation of production of medical 82Sr and 68Ge for 82Sr/82Rb and 68Ge/68Ga generators via proton accelerator. Nucl. Sci. Tech. 29, 137 (2018). doi: 10.1007/s41365-018-0474-1http://doi.org/10.1007/s41365-018-0474-1
Tkac P., Rotsch D., Brown M. et al., Chemical processing activities for 99Mo production by (γ, n) and (n, γ) reactions using enriched 100Mo and 98Mo targets, in Proc. of the 2015 99Mo Topical Meeting (Boston, USA, 31 Aug 2015)
Qaaod A., Ulik V., 226Ra irradiation to produce 225Ac and 213Bi in an accelerator-driven system reactor. Nucl. Sci. Tech. 31, 44 (2020). doi: 10.1007/s41365-020-00753-2http://doi.org/10.1007/s41365-020-00753-2
Mangera K., Ogbomo K., Zriba R. et al., Processing and evaluation of linear accelerator-produced 99Mo/99mTc in Canada. J. Radioanal. Nucl. Chem. 305, 79-85 (2015). doi: 10.1007/s10967-015-3997-5http://doi.org/10.1007/s10967-015-3997-5
Chen L., Yan R., Kang X. et al., Study on the production characteristics of 131I and 90Sr isotopes in a molten salt reactor. Nucl. Sci. Tech. 32, 33 (2021). doi: 10.1007/s41365-021-00867-1http://doi.org/10.1007/s41365-021-00867-1
Kang X., Zhu G., Yan R. et al., Evaluation of 99Mo production in a small modular thorium based molten salt reactor. Prog. Nucl. Energ. 124, 103337 (2020). doi: 10.1016/j.pnucene.2020.103337http://doi.org/10.1016/j.pnucene.2020.103337
Glenn D., Heger A., Hladik W., Comparison of characteristics of solution and conventional reactors for 99Mo production. Nucl. Technol. 118, 142-150 (1997).
Fang Z.X., Yu M., Huang Y.G. et al. Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021). doi: 10.1007/s41365-021-00911-0http://doi.org/10.1007/s41365-021-00911-0
Perez D., Lorenzo D., Brayner D. et al., Neutronic evaluation of the steady-state operation of a 20 kWth Aqueous Homogeneous Reactor for Mo-99 production. Ann. Nucl. Energ. 128, 148-159 (2019). doi: 10.1016/j.anucene.2019.01.002http://doi.org/10.1016/j.anucene.2019.01.002
Wu Y., Chao L., Song G. et al., Development of high intensity D-T fusion neutron generator (HINEG). Epj Web of Conferences. 153, 03006 (2017). doi: 10.1051/epjconf/201715303006http://doi.org/10.1051/epjconf/201715303006
Gholamzadeh Z., Feghhi S., Mirvakili S. et al., Computational investigation of 99Mo, 89Sr, and 131I production rates in a subcritical UO2(NO3)2 aqueous solution reactor driven by a 30-MeV proton accelerator. Nucl. Eng. Technol. 47, 875-883 (2015). doi: 10.1016/j.net.2015.08.004http://doi.org/10.1016/j.net.2015.08.004
Chemerisov S., Youker A., Hebden A. et al., Development of the mini-SHINE/MIPS experiments at ANL. Transactions of the American Nuclear Society. 107, 74-77 (2012).
Syarip S., Design and development of subcritical reactor by using aqueous fuel for Mo-99 production. Proceedings of the Pakistan Academy of Sciences 55, 21-26 (2018).
Pardo L., Daylen P., Daniel P. et al., Coupled multi-physics simulation for the evaluation of an accelerator-driven Aqueous Homogeneous Subcritical System for medical isotope production. Prog. Nucl. Energ. 134, 103-117 (2021). doi: 10.1016/j.pnucene.2021.103692http://doi.org/10.1016/j.pnucene.2021.103692
Ren L., Li Z., Han Y. et al., Neutronics study of a subcritical system driven by external neutron source for 99Mo production. Fusion Eng. Des. 165, 112-125 (2021). doi: 10.1016/j.fusengdes.2021.112263http://doi.org/10.1016/j.fusengdes.2021.112263
Wu Y., Liu C., Song G. et al., Design and research of HINEG for high current deuterium-tritium fusion neutron source. Nuclear Science and Engineering 36, 77-83 (2016). (in Chinese)
Seenappa L., Manjunatha H., Sridhar K. et al., Gamma and X-ray radiation compatibility of Ti–Ta–Hf–Zr alloys used for coronary stent applications. Nucl. Sci. Tech. 29, 3 (2018). doi: 10.1007/s41365-017-0339-zhttp://doi.org/10.1007/s41365-017-0339-z
Chadwick M., Herman M., Oblozinsky P. et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887-2996 (2011). doi: 10.1016/j.nds.2011.11.002http://doi.org/10.1016/j.nds.2011.11.002
Zhu Q., Shi Y., Hu D., Research on source multiplication method in nuclear criticality safety. Atomic Energy Science and Technology. 39, 97-97 (2005). (in Chinese)
Wu Y., Zhou J., Hao L. et al., Research and development of hybrid evaluation nuclear database system HENDL3.0 and its application in advanced nuclear energy system design. 02, 76-83 (2017). (in Chinese)
Qiu L., Introduction to nuclear energy physics and technology. University of Science and Technology of China Press (2012).
Sun G., Cheng M., Development of a MCNP5 and ORIGEN2 based burnup code for molten salt reactor. Nucl. Sci. Tech. 27, 65 (2016). doi: 10.1007/s41365-016-0070-1http://doi.org/10.1007/s41365-016-0070-1
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution