1.School of Nuclear Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
2.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
panqingquan@sjtu.edu.cn
Scan for full text
Qing-Quan Pan, Teng-Fei Zhang, Xiao-Jing Liu, et al. SP3-coupled global variance reduction method based on RMC code. [J]. Nuclear Science and Techniques 32(11):122(2021)
Qing-Quan Pan, Teng-Fei Zhang, Xiao-Jing Liu, et al. SP3-coupled global variance reduction method based on RMC code. [J]. Nuclear Science and Techniques 32(11):122(2021) DOI: 10.1007/s41365-021-00973-0.
A global variance reduction (GVR) method based on the SPN method is proposed. First, global multi-group cross-sections are obtained by Monte Carlo (MC) global homogenization. Then, the SP3 equation is solved to obtain the global flux distribution. Finally, the global weight windows are approximated by the global flux distribution, and the GVR simulation is performed. This GVR method is implemented as an automatic process in the RMC code. The SP3-coupled GVR method was tested on a modified version of the C5G7 benchmark with a thickened water shield. The results show that the SP3-coupled GVR method can improve the efficiency of the MC criticality calculation.
RMC codeGlobal homogenizationVariance reductionSPN theory
Ma Y., Liu S., Luo Z. et al., RMC/CTF multiphysics solutions to VERA core physics benchmark problem 9. Ann. Nucl. Energy 133, 837-852 (2019). doi: 10.1016/j.anucene.2019.07.033http://doi.org/10.1016/j.anucene.2019.07.033.
Kotlyar D., Shwageraus E., Numerical stable Monte Carlo-burnup-thermal-hydraulic coupling schemes. Ann. Nucl. Energy 63, 371-381 (2014). doi: 10.1016/j.anucene.2013.08.016http://doi.org/10.1016/j.anucene.2013.08.016
Guo X.Y., Shang X.T., Song J. et al. Kinetic methods in Monte Carlo code RMC and its implementation to C5G7-TD benchmark. Ann. Nucl. Energy 151, 107864, (2021). doi: 10.1016/j.anucene.2020.107864http://doi.org/10.1016/j.anucene.2020.107864
Zheng Z., Wu H.C., Cao L.Z. et al., A deterministic and Monte Carlo coupling method for PWR cavity radiation streaming calculation. Ann. Nucl. Energy 63, 162-171 (2014). doi: 10.1016/j.anucene.2013.07.040http://doi.org/10.1016/j.anucene.2013.07.040
Zheng Z., Mei Q.L., Deng L., Study on variance reduction technique based on adjoint Discrete Ordinate method. Ann. Nucl. Energy 112, 374-382 (2018). doi: 10.1016/j.anucene.2017.10.028http://doi.org/10.1016/j.anucene.2017.10.028
Pan Q.Q., Rao J.J., Zhou Y.Y. et al., Improved adaptive variance reduction algorithm based on RMC code for deep penetration problems. Ann. Nucl. Energy 137, 107113 (2020). doi: 10.1016/j.anucene.2019.107113http://doi.org/10.1016/j.anucene.2019.107113
Wagner J., Peplow D., Mosher S., FW-CADIS method for global and regional variance reduction of Monte Carlo radiation transport calculations. Nucl. Sci. Eng. 176, 37-57 (2014). doi: 10.13182/NSE12-33http://doi.org/10.13182/NSE12-33
Cooper M., Larsen E., Automated weight windows for global Monte Carlo particle transport calculations. Nucl. Sci. Eng. 137, 1-13 (2001).
Hendricks J., A code-generated Monte Carlo importance function. T. Am. Nucl. Soc. 41, 307 (1982).
Kelly D., Sutton T., Wilson S.. MC21 Analysis of the nuclear energy agency Monte Carlo performance benchmark problem. Proc. Advances in Reactor Physics—Linking Research, Industry, and Education, (PHYSOR 2012), Knoxville, Tennessee, April 15-20, American Nuclear Society, 2012.
Shangguan D.H., Li G., Zhang B.Y. et al., Uniform tally density based strategy for global tallying in Monte Carlo criticality calculation. Nucl. Sci. Eng. 182(4), 555-562 (2016). doi: 10.13182/NSE15-32http://doi.org/10.13182/NSE15-32
Pan Q.Q., Wang K., Uniform variance method for accelerated Monte Carlo criticality calculation. Prog. Nucl. Energy 139, 103858 (2021). doi: 10.1016/j.pnucene.2021.103858http://doi.org/10.1016/j.pnucene.2021.103858
Chao Y., A new and rigorous SPN theory – Part III: A succinct summary of the GSPN theory, the P3 equivalent GSP3 and implementation issues. Ann. Nucl. Energy 119, 310-321 (2019). doi: 10.1016/j.anucene.2018.04.029http://doi.org/10.1016/j.anucene.2018.04.029
Chao Y., Peng L., Tang C., A new and rigorous SPN theory – Part IV: Numerical qualification of GSP3 and the generalized transverse integration nodal method. Ann. Nucl. Energy 149, 107768 (2020). doi: 10.1016/j.anucene.2020.107768http://doi.org/10.1016/j.anucene.2020.107768
Wang K., Li Z.G., She D. et al., RMC – A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121-129 (2015). doi: 10.1016/j.anucene.2014.08.048http://doi.org/10.1016/j.anucene.2014.08.048
Carney S., Brown F., Kiedrowski B. et al., Theory and application of the fission matrix method for continuous-energy Monte Carlo. Ann. Nucl. Energy 73, 423-431 (2014). doi: 10.1016/j.anucene.2014.07.020http://doi.org/10.1016/j.anucene.2014.07.020
Leppanen J., Response matrix method–based importance solver and variance reduction scheme in the serpent 2 Monte Carlo code. Nucl. Technol. 205(11), 1416-1432 (2019). doi: 10.1080/00295450.2019.1603710http://doi.org/10.1080/00295450.2019.1603710
Pan Q.Q., Hao L., Li D. et al., A new nonlinear iterative method for SPN theory. Ann. Nucl. Energy 110, 920-927 (2017). doi: 10.1016/j.anucene.2017.07.030http://doi.org/10.1016/j.anucene.2017.07.030
HidekiI T., Yasushi M., Accuracy of interpolation methods for resonance self-shielding factors. Nucl. Sci. Technol. 18(2), 152-161 (1981). doi: 10.1080/18811248.1981.9733236Ihttp://doi.org/10.1080/18811248.1981.9733236I.
Petrovic , Benoist P.. BN Theory: Advances and New Models for Neutron Leakage Calculation. New York: Plenum Press, 223-281, 1996. doi: 10.1093/molehr/1.1.36http://doi.org/10.1093/molehr/1.1.36
Pan Q.Q., Wang K., Acceleration method of fission source convergence based on RMC code. Ann. Nucl. Energy 52(7), 1347-1354 (2020). doi: 10.1016/j.net.2019.12.007http://doi.org/10.1016/j.net.2019.12.007
Duderstadt J., Hamilton L.. Nuclear reactor theory. John Wiley & Sons, New York, 1976.
Beckert C., Grundmann U., Development and verification of a nodal approach for solving the multigroup SP3 equations. Ann. Nucl. Energy 35, 75-86 (2008). doi: 10.1016/j.anucene.2007.05.014http://doi.org/10.1016/j.anucene.2007.05.014
Smith K.S., Multidimensional nodal transport using the simplified PL method. T. Am. Nucl. Soc. 52, 427 (1986).
Pan Q.Q., Lu H.L., Li D.S. et al., The rigorous SP3 theory and study on its numerical verification. Proceedings of 25th International Conference on Nuclear Engineering (ICONE 25), 2017. doi: 10.1115/ICONE25-67309http://doi.org/10.1115/ICONE25-67309
Brantley P., Larsen E., The simplified P3 approximation. Nucl. Sci. Eng. 134, 1-21 (2000). doi: 10.1016/S0168-583X(99)00603-5http://doi.org/10.1016/S0168-583X(99)00603-5
Smith K., Nodal method storage reduction by nonlinear iteration. T. Am. Nucl. Soc. 44, 265 (1983).
Smith M., Lewis E., Na B., Benchmark on deterministic transport calculations without spatial homogenization –a 2d/3d MOX fuel assembly benchmark, Tech. Rep. NEA/NSC/DOC 16, OECD/NEA, (2003). doi: 10.1016/j.pnueene.2004.09.003http://doi.org/10.1016/j.pnueene.2004.09.003
Boyd W., Reactor multi-group cross section generation for fine mesh deterministic neutron transport simulations. PhD Thesis, Massachusetts Institute of Technology, 2017.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution