1.MOE Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
2.Yellow River Institute of Eco-Environmental Research, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450000, China
3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
4.School of Civil and Architectural Engineering, Nanjing Tech University Pujiang Institute, Nanjing 211134, China
zhangbowu@shnu.edu.cn;
jyli@shnu.edu.cn
Scan for full text
Yu-Qing Qiao, Yu Gu, Yu-Sen Meng, et al. Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling γ-ray irradiation with borate crosslinking. [J]. Nuclear Science and Techniques 32(12):135(2021)
Yu-Qing Qiao, Yu Gu, Yu-Sen Meng, et al. Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling γ-ray irradiation with borate crosslinking. [J]. Nuclear Science and Techniques 32(12):135(2021) DOI: 10.1007/s41365-021-00978-9.
Herein, we report a facile solution process for preparing multi-walled carbon nanotube (MWCNT) bucky paper for solar-driven interfacial water evaporation. This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol (PVA) under γ-ray irradiation on a cellulose acetate microporous membrane, followed by borate crosslinking. Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns. The as-prepared crosslinked MWCNT bucky papers (BBP membranes) were used as a solar absorber, by placing them on a paper-wrapped floating platform, for interfacial water evaporation under simulated solar irradiation. The BBP membranes showed good water tolerance and mechanical stability, with an evaporation rate of 0.79 kg m,-2, h,-1, and an evaporation efficiency of 56% under 1 sun illumination in deionized water. Additionally, the BBP membranes achieved an evaporation rate of 0.76 kg m,-2, h,-1, in both NaCl solution (3.5 wt%) and sulfuric acid solution (1 mol L,-1,), demonstrating their impressive applicability for water reclamation from brine and acidic conditions. An evaporation rate of 0.70 kg m,-2, h,-1, (very close to that from deionized water) was obtained from the solar evaporation of saturated NaCl solution, and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation.
γ-ray irradiationMulti-walled carbon nanotubesBucky paperSolar-driven interfacial water evaporationDesalination
H. Manchanda, M. Kumar, Study of water desalination techniques and a review on active solar distillation methods. Environ. Prog. Sustain. Energ. 37, 444-464 (2018).doi: 10.1002/ep.12657http://doi.org/10.1002/ep.12657
T. Ding, Y. Zhou, W.L. Ong et al., Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 42, 178-191 (2021).doi: 10.1016/j.mattod.2020.10.022http://doi.org/10.1016/j.mattod.2020.10.022
N. Li, L. Qiao, J. He et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Func. Mater. 31, 2008681 (2021).doi: 10.1002/adfm.202008681http://doi.org/10.1002/adfm.202008681
X. Wu, G.Y. Chen, G. Owens et al., Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energ. 12, 277-296 (2019).doi: 10.1016/j.mtener.2019.02.001http://doi.org/10.1016/j.mtener.2019.02.001
J. Chen, Z. Ye, F. Yang et al., Plasmonic nanostructures for photothermal conversion. Small Sci. 1, 2000055 (2021).doi: 10.1002/smsc.202000055http://doi.org/10.1002/smsc.202000055
Y. Lin, H. Xu, X. Shan et al., Solar steam generation based on the photothermal effect: from designs to applications, and beyond. J. Mater. Chem. A. 7, 19203-19227 (2019).doi: 10.1039/C9TA05935Khttp://doi.org/10.1039/C9TA05935K
Z. Deng, J. Zhou, L. Miao, et al. The emergence of solar thermal utilization: solar-driven steam generation. J. Mater. Chem. A. 5, 7691-7709 (2017).doi: 10.1039/C7TA01361Bhttp://doi.org/10.1039/C7TA01361B
F. Liu, Y. Lai, B. Zhao et al., Photothermal materials for efficient solar powered steam generation. Front. Chem. Sci. Eng. 13, 636-653 (2019).doi: 10.1007/s11705-019-1824-1http://doi.org/10.1007/s11705-019-1824-1
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683-718 (2019).doi: 10.1016/j.joule.2018.12.023http://doi.org/10.1016/j.joule.2018.12.023
Y. Shi, R. Li, Y. Jin et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171-1186 (2018).doi: 10.1016/j.joule.2018.03.013http://doi.org/10.1016/j.joule.2018.03.013
D. Huang, J. Zhang, G. Wu et al., A solar evaporator based on hollow polydopamine nanotubes with all-in-one synergic design for highly-efficient water purification. J. Mater. Chem. A 9, 15776-15786 (2021).doi: 10.1039/D1TA03335Bhttp://doi.org/10.1039/D1TA03335B
W. Guan, Y. Guo, G. Yu, Carbon materials for solar water evaporation and desalination. Small 2007176 (2021). doi: 10.1002/smll.202007176http://doi.org/10.1002/smll.202007176
P. He, L. Hao, N. Liu et al., Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators. Chem. Eng. J. 423, 130268 (2021).doi: 10.1016/j.cej.2021.130268http://doi.org/10.1016/j.cej.2021.130268
D.P. Storer, J.L. Phelps, X. Wu et al., Graphene and rice-straw-fiber-based 3D photothermal aerogels for Highly Efficient Solar Evaporation. ACS Appl Mater Interfaces. 12, 15279-15287 (2020). doi: 10.1021/acsami.0c01707http://doi.org/10.1021/acsami.0c01707
Z. Hu, L. Hao, N. Liu et al., High-performance bilayer solar evaporators constructed by candle-derived carbon nanoparticle/wood hybrid. Materials Today Communications. 28, 102636 (2021).doi: 10.1016/j.mtcomm.2021.102636http://doi.org/10.1016/j.mtcomm.2021.102636
S. Fallah, H.R. Mamaghani, R. Yegani et al., Use of graphene substrates for wastewater treatment of textile industries. Adv. Composites Hybrid Mater. 3, 187-193 (2020).doi: 10.1007/s42114-020-00146-4http://doi.org/10.1007/s42114-020-00146-4
C. Liu, Y. Lin, Y. Dong et al., Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance. Adv. Compos Hybrid Mater. 1-13 (2020). doi: 10.1007/s42114-020-00164-2http://doi.org/10.1007/s42114-020-00164-2
Y. Zhang, J. Guo, G. Han et al., Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv. 7, eabe8706 (2021). doi: 10.1126/sciadv.abe8706http://doi.org/10.1126/sciadv.abe8706
Y. Zhang, X. Cheng, X. Jiang et al., Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today 36, 40-47 (2020).doi: 10.1016/j.mattod.2020.02.002http://doi.org/10.1016/j.mattod.2020.02.002
L. Li, Zang L., Zhang S., et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination. Journal of the Taiwan Institute of Chemical Engineers. 111, 191-197 (2020).doi: 10.1016/j.jtice.2020.03.015http://doi.org/10.1016/j.jtice.2020.03.015
M.H.-O. Rashid, Ralph S.F. Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications. Nanomaterials. 7, 99 (2017).doi: 10.3390/nano7050099http://doi.org/10.3390/nano7050099
G.S. Simate, Iyuke S.E., Ndlovu S., et al. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environment International. 39, 38-49 (2012).doi: 10.1016/j.envint.2011.09.006http://doi.org/10.1016/j.envint.2011.09.006
Y. Liu, Zhao Y., Sun B., et al. Understanding the Toxicity of Carbon Nanotubes. Accounts of Chemical Research. 46, 702-713 (2013).doi: 10.1021/ar300028mhttp://doi.org/10.1021/ar300028m
Y. Rodriguez-Yañez, Muñoz B., Albores A. Mechanisms of toxicity by carbon nanotubes. Toxicology Mechanisms and Methods. 23, 178-195 (2013).doi: 10.3109/15376516.2012.754534http://doi.org/10.3109/15376516.2012.754534
J. Dong, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 9, 658-676 (2015).doi: 10.3109/17435390.2015.1009187http://doi.org/10.3109/17435390.2015.1009187
C. Corredor, W.C. Hou, S.A. Klein et al., Disruption of model cell membranes by carbon nanotubes. Carbon 60, 67-75 (2013).doi: 10.1016/j.carbon.2013.03.057http://doi.org/10.1016/j.carbon.2013.03.057
C.J. Frizzell, M. in het Panhuis, D.H. Coutinho et al., Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. Phys. Rev. B 72, 245420 (2005).doi: 10.1103/PhysRevB.72.245420http://doi.org/10.1103/PhysRevB.72.245420
Q. Liu, M. Li, Z. Wang et al., Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes. Composites Part A Applied Science and Manufacturing 55, 102-109 (2013).doi: 10.1016/j.compositesa.2013.08.011http://doi.org/10.1016/j.compositesa.2013.08.011
M.J. Yee, N.M. Mubarak, M. Khalid et al., Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Scientific Reports 8, 17295 (2018).doi: 10.1038/s41598-018-35638-3http://doi.org/10.1038/s41598-018-35638-3
S. Cosnier, R. Haddad, D. Moatsou et al., Biofunctionalizable flexible bucky paper by combination of multi-walled carbon nanotubes and polynorbornene-pyrene – Application to the bioelectrocatalytic reduction of oxygen. Carbon 93, 713-718 (2015).doi: 10.1016/j.carbon.2015.05.099http://doi.org/10.1016/j.carbon.2015.05.099
W.A.D. Wan Dalina, M. Mariatti, S.H. Tan, Multi-walled carbon nanotubes buckypaper/epoxy composites: effect of loading and pressure on tensile and electrical properties. Poly. Bull. 76, 2801-2817 (2019).doi: 10.1007/s00289-018-2530-8http://doi.org/10.1007/s00289-018-2530-8
A. Alshahrani, A. Alharbi, S. Alnasser et al., Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Separat. Purification Technol. 276, 119300 (2021).doi: 10.1016/j.seppur.2021.119300http://doi.org/10.1016/j.seppur.2021.119300
A. Satti, A. Perret, J.E. McCarthy et al., Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites. J. Mater. Chem. 20, 7941-7943 (2010).doi: 10.1039/C0JM01515Fhttp://doi.org/10.1039/C0JM01515F
D.N. Ventura, R.A. Stone, K.S. Chen et al., Assembly of cross-linked multi-walled carbon nanotube mats. Carbon 48, 987-994 (2010).doi: 10.1016/j.carbon.2009.11.016http://doi.org/10.1016/j.carbon.2009.11.016
A.G. Chmielewski, M. Haji-Saeid, Radiation technologies: past, present and future. Radiation Phys. Chem. 71, 17-21 (2004). doi: 10.1016/j.radphyschem.2004.05.040http://doi.org/10.1016/j.radphyschem.2004.05.040
K. Čubová, V. Čuba, Synthesis of inorganic nanoparticles by ionizing radiation – a review. Radiation Phys. Chem. 169, 108774 (2020).doi: 10.1016/j.radphyschem.2020.108774http://doi.org/10.1016/j.radphyschem.2020.108774
Y. Gu, Y. Qiao, Y. Meng et al., One-step synthesis of well-dispersed polypyrrole copolymers under gamma-ray irradiation. Polymer Chem. 12, 645-649 (2021).doi: 10.1039/D0PY01566Khttp://doi.org/10.1039/D0PY01566K
Y. Wang, M. Xie, J. Lan et al. Radiation controllable synthesis of Robust Covalent Organic Framework Conjugates for Efficient Dynamic Column Extraction of 99TcO4-. Chem. 6, 2796-2809 (2020).doi: 10.1016/j.chempr.2020.08.005http://doi.org/10.1016/j.chempr.2020.08.005
X. Ding, M. Yu, X. Zheng et al., Stability study of Disperse Blue 79 under ionizing radiation. Nuclear Science and Techniques. 31, 21 (2020). doi: 10.1007/s41365-020-0724-xhttp://doi.org/10.1007/s41365-020-0724-x
Y. Gu, B.W. Zhang, Z. Guo et al., Radiation-induced cross-linking: a novel avenue to permanent 3D modification of polymeric membranes. Nucl. Sci. Tech. 32, 70 (2021).doi: 10.1007/s41365-021-00905-yhttp://doi.org/10.1007/s41365-021-00905-y
B. Zhang, L. Liu, S. Xie et al., Built-up superhydrophobic composite membrane with carbon nanotubes for water desalination. RSC Advances. 4, 16561-16566 (2014).doi: 10.1039/C3RA47436Dhttp://doi.org/10.1039/C3RA47436D
F. Cataldo, On the action of γ radiation on solid C60 and C70 fullerenes: A comparison with graphite irradiation. Fullerene Scie. Technol. 8, 577-593 (2000).doi: 10.1080/10641220009351435http://doi.org/10.1080/10641220009351435
M.C. Evora, D. Klosterman, K. Lafdi et al., Functionalization of carbon nanofibers through electron beam irradiation. Carbon. 48, 2037-2046 (2010).doi: 10.1016/j.carbon.2010.02.012http://doi.org/10.1016/j.carbon.2010.02.012
J. Ye, B. Zhang, Y. Gu et al., Tailored graphene oxide membranes for the separation of ions and molecules. ACS Appl. Nano Mat. 2, 6611-6621 (2019).doi: 10.1021/acsanm.9b01356http://doi.org/10.1021/acsanm.9b01356
Y. Gu, J. Zhao, H. Zhou et al., Crosslinking imidazolium-intercalated GO membrane for acid recovery from low concentration solution. Carbon 183, 830-839 (2021).doi: 10.1016/j.carbon.2021.07.050http://doi.org/10.1016/j.carbon.2021.07.050
C. Yu, B. Zhang, F. Yan et al., Engineering nano-porous graphene oxide by hydroxyl radicals. Carbon 105, 291-296 (2016).doi: 10.1016/j.carbon.2016.04.050http://doi.org/10.1016/j.carbon.2016.04.050
Y. Gu, B. Zhang, Z. Fu et al., Poly (vinyl alcohol) modification of poly(vinylidene fluoride) microfiltration membranes for oil/water emulsion separation via an unconventional radiation method. J. Membrane Sci. 619, 118792 (2021).doi: 10.1016/j.memsci.2020.118792http://doi.org/10.1016/j.memsci.2020.118792
Y. Gu, J. Zhao, H. Jiang et al., Engineering robust RGO/PVA composite membrane for acid recovery via electron beam irradiation. Carbon accepted (2022)
Y. Gu, H. Li, L. Liu et al., Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy. Carbon 178, 678-687 (2021).doi: 10.1016/j.carbon.2021.03.051http://doi.org/10.1016/j.carbon.2021.03.051
B. Zhang, S. Xie, R. Wei et al., Radiation induced graft polymerization of multi-walled carbon nanotubes for superhydrophobic composite membrane preparation. Sci. China Chem. 59, 303-309 (2016).doi: 10.1007/s11426-015-5472-0http://doi.org/10.1007/s11426-015-5472-0
O. Koysuren, M. Karaman, H. Dinc, Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Poly. Sci. 124, 2736-2741 (2012).doi: 10.1002/app.35035http://doi.org/10.1002/app.35035
Y. Park, M. You, J. Shin et al., Thermal conductivity enhancement in electrospun poly(vinyl alcohol) and poly(vinyl alcohol)/cellulose nanocrystal composite nanofibers. Scientific Reports 9, 3026 (2019).doi: 10.1038/s41598-019-39825-8http://doi.org/10.1038/s41598-019-39825-8
B. Zhang, L. Li, Z. Wang et al. Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J. Mater. Chem. 22, 7775-7781 (2012)
A. Bos. The UV spectra of cellulose and some model compounds. J. Appl. Poly. Sci. 16, 2567-2576 (1972).doi: 10.1002/app.1972.070161010http://doi.org/10.1002/app.1972.070161010
Y. Li, W. Hong, H. Li et al., Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation. Desalination 511, 115113 (2021).doi: 10.1016/j.desal.2021.115113http://doi.org/10.1016/j.desal.2021.115113
L. Zhu, M. Gao, C.K.N Peh et al., Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 57, 507-518 (2019).doi: 10.1016/j.nanoen.2018.12.046http://doi.org/10.1016/j.nanoen.2018.12.046
Z. Xu, Z. Li, Y. Jiang et al., Recent advances in solar-driven evaporation systems. J. Materials Chem. A 8, 25571-25600 (2020).doi: 10.1039/D0TA08869Bhttp://doi.org/10.1039/D0TA08869B
G. Liu, T. Chen, J. Xu et al., Salt-rejecting solar interfacial evaporation. Cell Reports Phys. Sci. 2, 100310 (2021).doi: 10.1016/j.xcrp.2020.100310http://doi.org/10.1016/j.xcrp.2020.100310
K. Xu, C. Wang, Z. Li et al., Salt mitigation strategies of solar-driven interfacial desalination. Adv. Func. Material 31, 2007855 (2021).doi: 10.1002/adfm.202007855http://doi.org/10.1002/adfm.202007855
Q. Huang, C. Du, C. Guo et al., A high-efficiency salt-rejecting solar evaporator with optimized porous structure for continuous solar desalination. Appl. Thermal Eng. 187, 116515 (2021).doi: 10.1016/j.applthermaleng.2020.116515http://doi.org/10.1016/j.applthermaleng.2020.116515
A. Berezhkovskii, G. Hummer, Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).doi: 10.1103/PhysRevLett.89.064503http://doi.org/10.1103/PhysRevLett.89.064503
G. Shi, J. Liu, C. Wang et al., Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation-π interactions. Scientific Reports 3, 3436 (2013).doi: 10.1038/srep03436http://doi.org/10.1038/srep03436
L. Zhao, J. Zhang, P. Cao et al., Fast water transport reversible CNT/PVA hybrid hydrogels with highly environmental tolerance for multifunctional sport headband. Composites Part B Eng. 211, 108661 (2021).doi: 10.1016/j.compositesb.2021.108661http://doi.org/10.1016/j.compositesb.2021.108661
X. Zhou, F. Zhao, Y. Guo et al., A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy & Environmental Science. 11, 1985-1992 (2018).doi: 10.1039/C8EE00567Bhttp://doi.org/10.1039/C8EE00567B
X. Wu, Y. Wang, P. Wu et al., Dual‐zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Func. Mater. 31, 2102618 (2021).doi: 10.1002/adfm.202102618http://doi.org/10.1002/adfm.202102618
D. Fan, Y. Lu, H. Zhang et al., Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catalysis B Environ. 295, 120285 (2021).doi: 10.1016/j.apcatb.2021.120285http://doi.org/10.1016/j.apcatb.2021.120285
Y. Wang, X. Wu, B. Shao et al., Boosting solar steam generation by structure enhanced energy management. Sci. Bull. 65, 1380-1388 (2020).doi: 10.1016/j.scib.2020.04.036http://doi.org/10.1016/j.scib.2020.04.036
Y. Lu, D. Fan, H. Xu et al., Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification. Solar RRL. 4, 2000232 (2020).doi: 10.1002/solr.202000232http://doi.org/10.1002/solr.202000232
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution