1.Key Laboratory of Modern Acoustics and Department of Physics, Nanjing University, Nanjing 210093, China
2.School of Electronic Engineering, Nanjing XiaoZhuang University, Hongjing Road, Nanjing 211171, China.
3.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, CAS, 2 West Beijing Rood, Nanjing 210008, China
4.School of Physics Science and Engineering, Tongji University, Siping Rood 1239, Shanghai 200092, China
5.State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macao 999078, China
chenjunliang_upc@163.com
tkdong@pmo.ac.cn
zren@tongji.edu.cn
Scan for full text
Jun-Liang Chen, Su-Jun Yun, Tie-Kuang Dong, et al. Studies of the radiation environment on the Mars surface using the Geant4 toolkit. [J]. Nuclear Science and Techniques 33(1):11(2022)
Jun-Liang Chen, Su-Jun Yun, Tie-Kuang Dong, et al. Studies of the radiation environment on the Mars surface using the Geant4 toolkit. [J]. Nuclear Science and Techniques 33(1):11(2022) DOI: 10.1007/s41365-022-00987-2.
The radiation environment on the surface of Mars is a potential threat for future manned exploration missions to this planet. In this study, a simple geometrical model was built for simulating the radiation environment on the Mars surface caused by galactic cosmic rays (GCRs); the model was built and studied using the Geant4 toolkit. The simulation results were compared with the data reported by a radiation assessment detector (RAD). The simulated spectra of neutrons, photons, protons,α, particles, and particle groups ,Z,=3–5,Z,=6–8,Z,=9–13, and ,Z,=14–24 were in a reasonable agreement with the RAD data. However, for deuterons, tritons, and ,3,He, the simulations yielded much smaller values than for the corresponding RAD data. In addition, the particles’ spectra within the 90° zenith angle were also obtained. Based on these spectra, we calculated the radiation dose that would have been received by an average human body on Mars. The distribution of the dose throughout the human body was not uniform. The absorbed and equivalent doses for the brain were the highest among all of the organs, reaching 62.0±1.7 mGy/y and 234.1±8.0 mSv/y, respectively. The average absorbed and equivalent doses for the entire body were approximately 44 mGy/y and 153 mSv/y, respectively. Further analysis revealed that most of the radiation dose was owing to ,α, particles, protons, and heavy ions. We then studied the shielding effect of the Mars soil with respect to the radiation. The body dose decreased significantly with increasing soil depth. At the depth of 1.5 m, the effective dose for the entire body was 17.9±2.4 mSv/y, lower than the dose limit for occupational exposure. At the depth of 3 m, the effective dose to the body was 2.7±1.0 mSv/y, still higher than the accepted dose limit.
Galactic cosmic raysRadiation environment of the MarsAbsorbed doseEquivalent doseGeant4
G.B. Yu, E.H. Liu, G.L. Liu, et al., Moderate resolution imaging camera (MoRIC) of China’s first mars mission Tianwen-1. Earth Planet. Phys. 4(4), 364-370(2020). doi: 10.26464/epp2020056http://doi.org/10.26464/epp2020056
M. Durante, Space radiation protection: Destination mars. Life Sci. Space Res. (Amst). 1 2-9 (2014). doi: 10.1016/j.lssr.2014.01.002http://doi.org/10.1016/j.lssr.2014.01.002
F.A. Cucinotta, M. Durante, Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. The Lancet Oncology 7, 431-435 (2006). doi: 10.1016/S1470-2045(06)70695-7http://doi.org/10.1016/S1470-2045(06)70695-7
N.A. Schwadron, L. Townsend, K. Kozarev et al., Earth-moon-mars radiation environment module framework. Space Weather 8, S00E02 (2010). doi: 10.1029/2009SW000523http://doi.org/10.1029/2009SW000523
Á. Vicente-Retortillo, F. Valero, L. Vázquez et al., A model to calculate solar radiation fluxes on the Martian surface. J. Space Weather Space Clim. 5, A33 (2015). doi: 10.1051/swsc/2015035http://doi.org/10.1051/swsc/2015035
F.F. Badavi, D.O. Adams, J.W. Wilson, On the validity of the aluminum equivalent approximation in space radiation shielding applications. Adv. Space Research 46, 719-727 (2010). doi: 10.1016/j.asr.2010.04.006http://doi.org/10.1016/j.asr.2010.04.006
M. Durante, F.A. Cucinotta, Physical basis of radiation protection in space travel. Rev. Mod. Phys. 83, 1245-1281 (2011). doi: 10.1103/RevModPhys.83.1245http://doi.org/10.1103/RevModPhys.83.1245
M. Vuolo, G. Baiocco, S. Barbieri et al., Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit. Life Sci. Space Res. (Amst) 15, 69-78 (2017). doi: 10.1016/j.lssr.2017.08.003http://doi.org/10.1016/j.lssr.2017.08.003
A.I. Mrigakshi, D. Matthiä, T. Berger, et al., How Galactic Cosmic Ray models affect the estimation of radiation exposure in space. Adv. Space Res. 51, 825-834 (2013). doi: 10.1016/j.asr.2012.10.017http://doi.org/10.1016/j.asr.2012.10.017
D. Matthiä, T. Berger, A.I. Mrigakshi, et al., A ready-to-use galactic cosmic ray model. Adv. Space Research 51, 329-338 (2013). doi: 10.1016/j.asr.2012.09.022http://doi.org/10.1016/j.asr.2012.09.022
B. Ehresmann, C.J. Zeitlin, D.M. Hassler, et al., The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016. Life Sci. Space Res. (Amst) 14, 3-11 (2017). doi: 10.1016/j.lssr.2017.07.004http://doi.org/10.1016/j.lssr.2017.07.004
T. Sato, K. Niita, V.A. Shurshakov, et al., Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield. Cosmic Research 49, 319-324 (2011). doi: 10.1134/S0010952511040083http://doi.org/10.1134/S0010952511040083
F.A. Cucinotta, S. Hu, N.A. Schwadron et al., Space radiation risk limits and Earth-Moon-Mars environmental models. Space Weather 8, S00E09 (2010). doi: 10.1029/2010SW000572http://doi.org/10.1029/2010SW000572
S. Trovati, F. Ballarini, G. Battistoni et al., Human exposure to space radiation: role of primary and secondary particles. Radiat. Prot. Dosimetry 122, 362-366 (2006). doi: 10.1093/rpd/ncl438http://doi.org/10.1093/rpd/ncl438
B. Ehresmann, C. Zeitlin, D.M. Hassler et al., Charged particle spectra obtained with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD) on the surface of Mars. J. Geophys. Res. Planets 119, 468-479 (2014). doi: 10.1002/2013JE004547http://doi.org/10.1002/2013JE004547
L. de la Fuente Rosales, S. Incerti, Z. Francis et al., Accounting for radiation-induced indirect damage on DNA with the Geant 4-DNA code. Phys. Med. 51, 108-116 (2018). doi: 10.1016/j.ejmp.2017.09.048http://doi.org/10.1016/j.ejmp.2017.09.048
N. Lampe, M. Karamitros, V. Breton et al., Mechanistic DNA damage simulations in Geant4-DNA part 1: A parameter study in a simplified geometry. Phys. Med. 48, 135-145 (2018). doi: 10.1016/j.ejmp.2018.02.011http://doi.org/10.1016/j.ejmp.2018.02.011
J. Chen, S. Yun, T. Dong et al., Investigate the radiation-induced damage on an atomistic DNA model by using Geant4-DNA toolkit. Nucl. Instrum. Meth. Sect. B 494-495, 59-67 (2021). doi: 10.1016/j.nimb.2021.03.010http://doi.org/10.1016/j.nimb.2021.03.010
J.C. Chancellor, G.B. Scott, J.P. Sutton, Space radiation: the number one risk to astronaut health beyond low earth orbit. Life (Basel), 4, 491-510 (2014). doi: 10.3390/life4030491http://doi.org/10.3390/life4030491
T.C. Slaba, N.N. Stoffle, Evaluation of HZETRN on the Martian surface: Sensitivity tests and model results, Life Sci. Space Res. (Amst), 14, 29-35 (2017). doi: 10.1016/j.lssr.2017.03.001http://doi.org/10.1016/j.lssr.2017.03.001
D. Matthiä, B. Ehresmann, H. Lohf, et al., The Martian surface radiation environment—a comparison of models and MSL/RAD measurements. J. Space Weather Space Clim. 6, A13 (2016). doi: 10.1051/swsc/2016008http://doi.org/10.1051/swsc/2016008
W.C. de Wet, L.W. Townsend, A calculation of the radiation environment on the Martian surface. Life Sci. Space Res. (Amst) 14, 51-56 (2017). doi: 10.1016/j.lssr.2017.07.008http://doi.org/10.1016/j.lssr.2017.07.008
J.W. Norbury, T.C. Slaba, N. Sobolevsky et al., Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes. Life Sci. Space Res. (Amst) 14, 64-73 (2017). doi: 10.1016/j.lssr.2017.04.001http://doi.org/10.1016/j.lssr.2017.04.001
J. Flores-McLaughlin, Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements. Life Sci. Space Res. (Amst) 14, 36-42 (2017). doi: 10.1016/j.lssr.2017.07.007http://doi.org/10.1016/j.lssr.2017.07.007
D. Matthiä, D.M. Hassler, W. de Wet, et al., The radiation environment on the surface of Mars—Summary of model calculations and comparison to RAD data. Life Sci. Space Res. (Amst) 14, 18-28 (2017). doi: 10.1016/j.lssr.2017.06.003http://doi.org/10.1016/j.lssr.2017.06.003
H.N. Ratliff, M.B.R. Smith, L. Heilbronn, Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6. Life Sci. Space Res (Amst), 14, 43-50 (2017). doi: 10.1016/j.lssr.2017.07.003http://doi.org/10.1016/j.lssr.2017.07.003
D. Matthiä, T. Berger, The radiation environment on the surface of Mars—Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS. Life Sci. Space Res. 14, 57-63 (2017). doi: 10.1016/j.lssr.2017.03.005http://doi.org/10.1016/j.lssr.2017.03.005
S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Meth. Sect. A 506, 250-303 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE T. Nucl. Sci. 53, 270-278 (2006). doi: 10.1109/TNS.2006.869826http://doi.org/10.1109/TNS.2006.869826
J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Meth. Sect. A 835, 186-225 (2016). doi: 10.1016/j.anucene.2014.08.021http://doi.org/10.1016/j.anucene.2014.08.021
D.M. Hassler, C. Zeitlin, R.F. Wimmer-Schweingruber, et al., Mars’ surface radiation environment measured with the Mars science laboratory's curiosity rover. Science, 343, 1244797 (2014). doi: 10.1126/science.1244797http://doi.org/10.1126/science.1244797
C.G. Justus, D.L. Johnson, Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) Users Guide, Marshall Space Flight Center, NASA/TM-2001-210961 (2001).
H. Burkhardt, V. M. Grichine, P. Gumplinger et al., Geant4 standard electromagnetic package for HEP applications. IEEE Symposium Conference Record Nuclear Science 2004, 3, 1907-1910 (2004). doi: 10.1109/NSSMIC.2004.1462617http://doi.org/10.1109/NSSMIC.2004.1462617
A. Schumann, J. Petzoldt, P. Dendooven et al., Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation. Phys. Med. Biol. 60 4197-4207 (2015). doi: 10.1088/0031-9155/60/10/4197http://doi.org/10.1088/0031-9155/60/10/4197
J. Chen, S. Yun, T. Dong, et al., Validation of Geant4 physics models for nuclear beams in extended media. Nucl. Instrum. Meth. Sect. B 434, 113-119 (2018). doi: 10.1016/j.nimb.2018.08.022http://doi.org/10.1016/j.nimb.2018.08.022
Physics Reference Manual. https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.htmlhttps://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html
J. Köhler, C. Zeitlin, B. Ehresmann, et al., Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Research Planets 119, 594-603 (2014). doi: 10.1002/2013JE004539http://doi.org/10.1002/2013JE004539
W.M. Sun, N. Du, WD. Tian et al., Secondary and activated X(γ) radiation of SPHIC particle therapy facility, Nucl. Sci. Tech. 32(4), 1-8 (2021). doi: 10.1007/s41365-021-00870-6http://doi.org/10.1007/s41365-021-00870-6
CY. Li, XB. Xia, J. Cai et al., Radiation dose distribution of liquid fueled thorium molten salt reactor. Nucl. Sci. Tech. 32:22 (2021). doi: 10.1007/s41365-021-00857-3http://doi.org/10.1007/s41365-021-00857-3
C.M. Niu, M.H. Li, J.R. Dai, Cage-like radiotherapy system for noncoplanar radiotherapy. Nucl. Sci. Tech. 32: 12 (2021). doi: 10.1007/s41365-021-00848-4http://doi.org/10.1007/s41365-021-00848-4
P. Huang, S.Q. Li, R.D. Yang et al., Photon energy response optimization using few-channel spectroscopy dose method for Si-PIN photodetector applied in personal dose equivalent measurements. Nucl. Sci. Tech. 31, 36 (2020). doi: 10.1007/s41365-020-0748-2http://doi.org/10.1007/s41365-020-0748-2
X.J. Ding, M. Yu, X. Zheng et al., Stability study of Disperse Blue 79 under ionizing radiation. Nucl. Sci. Tech. 31: 21 (2020). doi: 10.1007/s41365-020-0724-xhttp://doi.org/10.1007/s41365-020-0724-x
Z. Ahmadi Ganjeh, M. Eslami-Kalantari, A.A. Mowlavi, Dosimetry calculations of involved and noninvolved organs in proton therapy of liver cancer: a simulation study. Nucl. Sci. Tech. 30, 173 (2019). doi: 10.1007/s41365-019-0698-8http://doi.org/10.1007/s41365-019-0698-8
C.Q. Chen, X.B. Xia, Z.H. Zhang et al., Radiological environmental impact analysis of a 2-MW thorium molten salt reactor during an accident. Nucl. Sci. Tech. 30, 78 (2019). doi: 10.1007/s41365-019-0605-3http://doi.org/10.1007/s41365-019-0605-3
S. Abdullahi, A.F. Ismail, S. Mohd Fadzil, et al. Assessment of the long-term possible radiological risk from the use of ceramic tiles in Malaysia. Nucl. Sci. Tech. 30, 19 (2019). doi: 10.1007/s41365-019-0558-6http://doi.org/10.1007/s41365-019-0558-6
Y.H. Wang, Q. Li, L. Chen et al., Simulation study of the dose and energy responses of FNTD personal neutron dosimetry. Nucl. Sci. Tech. 30, 32 (2019). doi: 10.1007/s41365-019-0546-xhttp://doi.org/10.1007/s41365-019-0546-x
A.D. Wrixon, New ICRP recommendations. J. Radiol. Prot. 28 161-168 (2008). doi: 10.1088/0952-4746/28/2/r02http://doi.org/10.1088/0952-4746/28/2/r02
W.S. Snyder, JrH.L., Fisher, M.R. Ford et al., Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J. Nucl. Med. 10 Suppl 3:7-52 (1969).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution