1.Radioactive Isotopes and Generators Department, Hot Labs. Center, Egyptian Atomic Energy Authority, P. O. Box 13759, Cairo, Egypt
2.Reactors Department, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
3.Physics Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
Khaled M. El-Azony mmenaa_2004@yahoo.com
Scan for full text
Khaled M. El-Azony, Nader M. A. Mohamed, Dalal A. Aloraini. Advantages and disadvantages of nuclear reactions used in reactors or cyclotrons, in addition to a theoretical study based on photo-disintegration on natural indium for 111Ag production. [J]. Nuclear Science and Techniques 33(2):14(2022)
Khaled M. El-Azony, Nader M. A. Mohamed, Dalal A. Aloraini. Advantages and disadvantages of nuclear reactions used in reactors or cyclotrons, in addition to a theoretical study based on photo-disintegration on natural indium for 111Ag production. [J]. Nuclear Science and Techniques 33(2):14(2022) DOI: 10.1007/s41365-022-00991-6.
Production routes were recorded on available reactions for ,111,Ag production from nuclear reactors or cyclotrons using a natural palladium target based on ,110,Pd(n, γ) and ,110,pd(d, n) reactions, respectively. ,nat,Cd(γ, x) based on ,110,Cd(γ, p) has also been studied as a prospective reaction for the production of ,111,Ag. Unfortunately, these nuclear reactions are difficult to utlize because, in some cases, they reduce the specific activity of ,111,Ag. This is a consequence of the stable silver isotopes produced in high concentrations. These isotopes include ,107, 109,Ag and, in other cases, the high impurity of silver radioisotopes, such as ,110m, 106m, 105,Ag, that are produced during parallel nuclear reactions. Due to a scarcity of data regarding the (γ, α) reaction, the gamma reaction on natural indium for ,111,Ag production based on the ,115,In(γ, α) reaction was calculated. The ,nat,In(γ, α) reaction satisfies the criteria as a possible reaction to produce ,111,Ag with a sufficient yield and purity as consequence of the high ,115,In (95.7 %) abundance as an enriched form and a relatively soft background caused by the parallel nuclear reactions.
Silver-111Nuclear dataNatural cadmiumNatural palladiumNatural indium.
H. J. Klasen. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2), 131 (2000). doi: 10.1016/s0305-4179(99)00116-3http://doi.org/10.1016/s0305-4179(99)00116-3.
H. J. Klasen, A Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2), 117 (2000). doi: 10.1016/s0305-4179(99)00108-4http://doi.org/10.1016/s0305-4179(99)00108-4.
S. Silver, L. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol 33(1), 627 (2006). doi: 10.1007/s10295-006-0139-7http://doi.org/10.1007/s10295-006-0139-7.
M. A. Hollinger, Toxicological aspects of topical silver pharmaceuticals. Crit. Rev. Toxicol 26(3), 255 (1996). doi: 10.3109/10408449609012524http://doi.org/10.3109/10408449609012524.
A. Kascatan-Nebioglu, A. Melaiye, K. Hindi et al., Synthesis from caffeine of a mixed N-heterocyclic carbene-silver acetate complex active against resistant respiratory pathogens. J. Med. Chem. 49(23), 6811 (2006). doi: 10.1021/jm060711thttp://doi.org/10.1021/jm060711t
A. Melaiye, R. S. Simons, A. Milsted, et al., Formation of water-soluble pincer silver(i)−carbene complexes: a novel antimicrobial agent. J. Med. Chem., 47(4), 973 (2004). doi: 10.1021/jm030262mhttp://doi.org/10.1021/jm030262m
H.N. Abdelhamid, A. Talib, H.F. Wu, Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents, RSC Adv. 44(5), 34594 (2015). doi: 10.1039/c4ra14461ahttp://doi.org/10.1039/c4ra14461a
J.F. Chatal, C.A. Hoefnagel, Radionuclide therapy, Lancet, 354(9182), 931-935 (1999). doi: 10.1016/S0140-6736(99)06002-Xhttp://doi.org/10.1016/S0140-6736(99)06002-X
H. Y. Tan, C.H. Yeong, Y.H. Wong et al., Neutron-activated theranostic radionuclides for nuclear medicine. Nucl. Medic. Biol. 90-91, 55-68 (2020). doi: 10.1016/j.nucmedbio.2020.09.005http://doi.org/10.1016/j.nucmedbio.2020.09.005
E. Lopci, A. Chiti, M. R. Castellani et al., Matched pairs dosimetry: 124I/131I meta- iodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. EUR. J. Nucl. Med. Mol. Imaging. 38(1), S28 (2011). doi: 10.1007/s00259-011-1772-6http://doi.org/10.1007/s00259-011-1772-6.
S.M. Qaim, Therapeutic radionuclides and nuclear data. Radiochim Acta., 89, 297 (2001). doi: 10.1524/ract.2001.89.4-5.297http://doi.org/10.1524/ract.2001.89.4-5.297
S. Del Vecchio, A. Zannetti, R. Fonti et al., Nuclear imaging in cancer theranostics. Q. J. Nucl. Med. Mol. Imaging, 51, 152 (2007).
J.R. Ballinger, Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol, 91, 1091 (2018). doi: 10.1259/bjr.20170969http://doi.org/10.1259/bjr.20170969.
S. Chattopadhyay, K.V. Vimalnath, S. Saha et al., Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy, 111Ag-labelled hydroxyapatite (HA) particles, Appl. Radiat. Isot. 66, 334-339 (2008). doi: 10.1016/j.apradiso.2007.09.003http://doi.org/10.1016/j.apradiso.2007.09.003.
T. P. Aweda, S. Zhang, C. Chiedza et al., Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using 111Ag as a radiotracer. J. Labelled Comp. Radiopharm. 58(6), 234 (2015). doi: 10.1002/jlcr.3289http://doi.org/10.1002/jlcr.3289.
K. Ooe, T. Watabe, Y. Shirakami, et al., Production and separation of theranostic radionuclide Ag-111 from Pd target. J. Nucl. Med. 61, 1116 (2020). https://jnm.snmjournals.org/content/61/supplement_1/1116https://jnm.snmjournals.org/content/61/supplement_1/1116
J.A. Odonoghue, M. Bardies, T.E. Wheldon, Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nucl. Med. 36, 1902 (1995). https://jnm.snmjournals.org/content/36/10/1902https://jnm.snmjournals.org/content/36/10/1902
S.S. Kelkar, T.M. Reineke, Theranostics: Combining imaging and therapy. Bioconjugate Chem. 22, 1879 (2011). doi: 10.1021/bc200151qhttp://doi.org/10.1021/bc200151q.
T.M. Illidge, S. Brock, Radioimmunotherapy of cancer: Using monoclonal antibodies to target radiotherapy. Curr. Pharm. Design 6, 1399-1418 (2000). doi: 10.2174/1381612003399257http://doi.org/10.2174/1381612003399257.
D.K. Hazra, G.T. Stevenson, K.S. Kan, Linkage of silver to antibodies through 2-imino thiolane. Cell Biophys 26, 183-186 (1995). doi: 10.1007/BF02791579http://doi.org/10.1007/BF02791579.
R. Alberto, P. Blauenstein, I. Novakhofer et al., An improved method for the separation of Ag-111 from irradiated natural palladium. Appl. Radiat. Isotopes 43, 869 (1992). doi: 10.1016/0883-2889(92)90148-8http://doi.org/10.1016/0883-2889(92)90148-8
M. Khalid, A. Mushtaq, M.Z. Iqbal, Separation of Ag-111 from neutron irradiated natural palladium using alumina as an adsorbent. Appl. Radiat. Isotopes 52, 19 (2000). doi: 10.1016/s0969-8043(99)00083-4http://doi.org/10.1016/s0969-8043(99)00083-4.
F. Ditroi, F. Tarkanyi, S. Takacs, et al., Activation cross-sections of deuteron induced reactions on natural palladium. Nucl. Instrum. Meth. B 270, 61 (2012). doi: 10.1016/j.nimb.2011.10.010http://doi.org/10.1016/j.nimb.2011.10.010.
A. Hermanne, S. Takacs, F. Tarkanyi, et al., Experimental cross sections for charged particle production of the therapeutic radionuclide Ag-111 and its PET imaging analogue Ag-104m,g, Nucl. Instrum. Meth. B 217, 193-201 (2004). doi: 10.1016/j.nimb.2003.09.038http://doi.org/10.1016/j.nimb.2003.09.038.
N. Ukon, M. Aikawa, Y. Komori, et al., Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes. Nucl. Instrum. Meth. B 426, 13 (2018). doi: 10.1016/j.nimb.2018.04.019http://doi.org/10.1016/j.nimb.2018.04.019
E. Cornelis, G. J. Vanpraet, C. Bastian, et al., Average capture cross section of the fission product nuclei Pd-104, Pd-105, Pd-106, Pd-108, and Pd-110, Conf. Nucl. Data for Sci., Technol., p. 222, (1982).
R.L. Macklin, J. Halperin, R.R. Winters, Pd-104,105,106,108,110 (n,γ) cross sections above 2.6 keV. Nucl. Sci. Eng. 71, 182 (1979). doi: 10.13182/NSE79-A20409http://doi.org/10.13182/NSE79-A20409.
S.S. Belyshev, B.S. Ishkhanov, A.A. Kuznetsov et al., Photodisintegration of cadmium isotopes. Physics of Atomic Nuclei 77(7), 809 (2014). doi: 10.1134/S1063778814060039http://doi.org/10.1134/S1063778814060039.
S. A. Karamian, J. J. Carroll, N. V. Aksenov, et al., Production of Isotopes and Isomers with Irradiation of Z = 47–50 Targets by 23-MeV Bremsstrahlung. Phys. Atom. Nucl. 78, 757 (2015). doi: 10.7868/S0044002715090123http://doi.org/10.7868/S0044002715090123.
S. A. Karamian, Yield of bremsstrahlung induced reactions as a probe nucleon-nucleon correlations in heavy nuclei. NPAE-Kyiv2012: 4. International Conference on Current Problems in Nuclear Physics and Atomic Energy, Kyiv (Ukraine), 3-7 Sep 2012. Reference number: 45058523, INIS Vol. 45, INIS Issue 22.
Y.M. Volkov, A.I. Ignatiev, G.A. Kolomenskii et al. α-decay of giant resonances in 58, 60Ni nuclei. Phys. of Atomic Nuclei. 32, 595-602 (1980).
B. S. Dolbilkin, Sh. Kan, T. Kim, et al. 58Ni(e, e’α) reaction at excitation-energy range of 8- 25 MeV // Bull. RAS. Phys. 55, 967 (1991).
I. N. Vishnevsky, V. A. Zheltonozhsky, I. N. Kadenko et al., Integral cross-sections of the photonuclear reactions on 118Sn and 121Sb nuclei // Ibid. –P. 121.
T. Mastren, V. Radchenko, J. W. Engle et al., Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix. Analytica Chimica Acta 998, 75-82, (2018). doi: 10.1016/j.aca.2017.10.020http://doi.org/10.1016/j.aca.2017.10.020.
O. N. Kononova, N. G. Goryaeva, O. V. Dychko, Ion exchange recovery of palladium (II) from nitrate weak acid solution. Natural Science 1(03), 166 (2009). doi: 10.4236/ns.2009.13021http://doi.org/10.4236/ns.2009.13021.
W.A. Volkert, T.J. Hoffman, Therapeutic radiopharmaceuticals. Chem. Rev. 99, 2269-2292, (1999). doi: 10.1021/cr9804386http://doi.org/10.1021/cr9804386.
C. Waldherr, M. Pless, H.R. Maecke et al., The clinical value of [Y-90- DOTA]-D-Phe(1)-Tyr(3)-octreotide (Y-90-DOTATOC) in the treatment of neuroendocrine tumours: A clinical phase II study, Ann Oncol, 12 (2001) 941-945. doi: 10.1023/A:1011160913619http://doi.org/10.1023/A:1011160913619.
S. M. Qaim, Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta, 30, 147 (1982). Reference number: EDB-83-026510.
S. M. Qaim, (editor), Nuclear data for medical applications: an overview. Special issue of Radiochemica Acta, 89, 189 (2001).
J. R. Lamarch, Introduction to Nuclear Engineering, Addison-Wesley Publishing Company, Inc, USA, (1983).
T.D. Thiep, T.T. An, N.T. Khai et al., Determination of the total bremsstrahlung photon flux from electron accelerators by simultaneous activation of two monitors. Phys. Part. Nucl. Lett. 9, 648-655 (2012).
T. Kawano, Y. S. Cho, P. Dimitriou et al., IAEA Photonuclear Data Library 2019. Report number: LA-UR-19-26964.
M. Krticka, R. B. Firestone, D. P. Mcnabb, et al., Thermal neutron capture cross sections of the palladium isotopes. Phys. Rev. C 77, 054615 (2008). doi: 10.1103/PhysRevC.77.054615http://doi.org/10.1103/PhysRevC.77.054615.
T.H. Nguyen, G. N. Kim, K. Kim, et al., Measurements of the thermal neutron cross-section and resonance integral for the 108Pd(n,γ)109Pd reaction. Nucl. Instrum. Meth. B 424, 37-42 (2018). doi: 10.1016/j.nimb.2018.03.031http://doi.org/10.1016/j.nimb.2018.03.031.
P. Lantz, C. Baldock, L. Idom. Oak Ridge National Lab. Reports No.3679, 10 (1964).
C. L. Duncan, K. S. Krane. Neutron capture cross section of 102Pd. Phys. Rev. C 71, 054322 (2005). doi: 10.1103/PhysRevC.71.054322http://doi.org/10.1103/PhysRevC.71.054322.
IAEA, Manual for reactor produced radioisotopes, IAEA-TEC-1340, (2003).
F. Tárkányi, F. Ditrói, S. Takács et al., Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV. Appl. Radiat. Isot. 114, 128 (2016). doi: 10.1016/j.apradiso.2016.05.022http://doi.org/10.1016/j.apradiso.2016.05.022.
A. Hermanne, S. Takács, F. Tárkányi, R. Bolbos, Cross section for the charged particle production of the therapeutic radionuclide Ag-111 and its PET imagins analogue Ag-104g, Annales Universitatis Turkuensis, Seria, Turku, Finland, 14., (2002).
A. Hermanne, S. Takacs, F. Tarkanyi et al., Experimental cross sections for charged particle production of the therapeutic radionuclide Ag-111 and its PET imaging analogue 104m,gAg. Nucl. Instrum. Meth. B 217, 193 (2004a). doi: 10.1016/j.nimb.2003.09.038http://doi.org/10.1016/j.nimb.2003.09.038.
A. Hermanne, F. Tárkányi, S. Takács et al., Experimental determination of cross section of alpha-induced reactions on natPd, in: Haight, R.C., Talou, P., Kawano, T. (Eds.), International Conference on Nuclear Data for Science and Technology. AIP, Santa Fe, USA, 961 (2004b).
A. Leprêtre, H. Beil, R. Bergère et al., A study of the giant dipole resonance of vibrational nuclei in the 103 ≦ A ≦ 133 mass region, Nucl. Phys. A 219, 39 (1974).
S. S. Belyshev, B. S. Ishkhanov, V. N. Orlin et al., Photodisintegration of the isotope 116Cd. Phys. At. Nucl. 76, 931 (2012). doi: 10.1134/S106377881308005Xhttp://doi.org/10.1134/S106377881308005X.
B.S. Ishkhanov, V.N. Orlin, Description of cross sections for photonuclear reactions in the energy range between 7 and 140 MeV, Phys. Atomic Nuclei 72, 410 (2009). doi: 10.1134/S1063778809030041http://doi.org/10.1134/S1063778809030041.
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution