1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.State Power Investment Corporation Research Institute, Co.Ltd. Beijing 100029, China
xiaoxiang@mail.tsinghua.edu.cn (X. Xiao),
wangkan@mail.tsinghua.edu.cn (K. Wang)
Scan for full text
Xiang Xiao, Kan Wang, Tong-Rui Yang, et al. Application of homogenization techniques for inflow transport approximation on light water reactor analysis. [J]. Nuclear Science and Techniques 33(1):7(2022)
Xiang Xiao, Kan Wang, Tong-Rui Yang, et al. Application of homogenization techniques for inflow transport approximation on light water reactor analysis. [J]. Nuclear Science and Techniques 33(1):7(2022) DOI: 10.1007/s41365-022-00993-4.
The transport cross-section based on inflow transport approximation can significantly improve the accuracy of light water reactor (LWR) analysis, especially for the treatment of the anisotropic scattering effect. The previous inflow transport approximation is based on the moderator cross-section and normalized fission source, which is approximated using transport theory. Although the accuracy of reactivity is increased, the ,P,0, flux moment has a large error in the Monte Carlo code. In this study, an improved inflow transport approximation was introduced with homogenization techniques, applying the homogenized cross-section and accurate fission source. The numerical results indicated that the improved inflow transport approximation can increase the ,P,0, flux moment accuracy and maintain the reactivity calculation precision with the previous inflow transport approximation in typical LWR cases. In addition to this investigation, the improved inflow transport approximation is related to the temperature factors. The improved inflow transport approximation is flexible and accurate in the treatment of the anisotropic scattering effect, which can be directly used in the temperature-dependent nuclear data library.
Inflow transport approximationAnisotropic scattering effectHomogenization techniquesLight water reactor
J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications. Paper presented at the Proceedings of PHYSOR 2006 ANS Topical Meeting, (Vancouver, Canada, 2006)
A. Yamamoto, Y. Kitamura, Y. Yamane, Simplified treatments of anisotropic scattering in LWR core calculations. J. Nucl. Sci. Technol. 45(3), 217-229(2008). doi: 10.1080/18811248.2008.9711430http://doi.org/10.1080/18811248.2008.9711430.
K. S. Kim, M. L. Williams, D. Wiarda et al., Development of a new 47-group library for the CASL neutronics simulators, Paper presented at the Mathematics and Computations, Supercomputing in Nuclear Applications and Monte Carlo International Conference, (Nashville, America, 2015)
B. Kochunas, B. Collins, D. Jabaay, et al., Overview of development and design of MPACT: Michigan parallel characteristics transport code, Paper presented at the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, (San Francisco, America, 2013)
N.A. Gibson, Dissertation, Novel Resonance Self-Shielding Methods for Nuclear Reactor Analysis (Massachusetts Inst. Technol., America, 2016). http://dspace.mit.edu/handle/1721.1/103658http://dspace.mit.edu/handle/1721.1/103658.
W. Boyd, N. Gibson, B. Forget et al., An analysis of condensation errors in multi-group cross section generation for fine-mesh neutron transport calculations. Ann. Nucl. Energy 112, 267-276(2018). doi: 10.1016/j.anucene.2017.09.052http://doi.org/10.1016/j.anucene.2017.09.052.
L.X. Liu, C Hao, Y.L. Xu, Equivalent low-order angular flux nonlinear finite difference equation of MOC transport calculation. Nucl. Sci. Tech., 31, 125 (2020). doi: 10.1007/s41365-020-00834-2http://doi.org/10.1007/s41365-020-00834-2.
B.R. Herman, B. Forget, K. Smith et al., Improved diffusion coefficients generated from Monte Carlo codes. Paper presented at the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, (San Francisco, America, 2013)
G. Bell, G. Hansen, H. Sandmeier, Multitable Treatments of Anisotropic Scattering in S N Multigroup Transport Calculations. Nucl. Sci. Eng. 28(3), 376-383(1967). doi: 10.13182/nse67-2http://doi.org/10.13182/nse67-2.
S. Choi, K. Smith, H. C. Lee, et al., Impact of inflow transport approximation on light water reactor analysis. J. Comput. Phys. 299, 352-373(2015). doi: 10.1016/j.jcp.2015.07.005http://doi.org/10.1016/j.jcp.2015.07.005.
Z.X. Fang, M Yu, Y.G. Huang, et al., Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021). doi: 10.1007/s41365-021-00911-0http://doi.org/10.1007/s41365-021-00911-0.
M Dai, M.S. Cheng, Application of material-mesh algebraic collapsing acceleration technique in method of characteristics–based neutron transport code. Nucl. Sci. Tech. 32, 87 (2021). doi: 10.1007/s41365-021-00923-whttp://doi.org/10.1007/s41365-021-00923-w.
G.C. Zhang, J Liu, L.Z. Cao, et al., Neutronic calculations of the China dual-functional lithium–lead test blanket module with the parallel discrete ordinates code Hydra. Nucl. Sci. Tech. 31,74(2020). doi: 10.1007/s41365-020-00789-4http://doi.org/10.1007/s41365-020-00789-4.
R. Roy. G. Marleau, A. Hebert, User guide for dragon version 5: Technical Report IGE 335. (École Polytechnique de Montréal, Canada, 2014)
K. Wang, Z. G. Li, D She, et al., RMC - A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121-129(2013). doi: 10.1016/j.anucene.2014.08.048http://doi.org/10.1016/j.anucene.2014.08.048.
R. E. MacFarlane and D. W. Muir, The NJOY Nuclear Data Processing System, LA-12740-M. (Los Alamos National Laboratory, America 1999)
A. Hebert, Applied Reactor Physics, (École Polytechnique de Montréal, Canada, 2009)
D. L. Aldama, F. Leszczynski, and A. Trkov, WIMS-D Library Update, Paper presented at the Final Rep. a Coord. Res.Proj. (IAEA, Austria,2003), http://www.pub.iaea.org/MTCD/Publications/PDF/te_1468_web.pdf#page=22http://www.pub.iaea.org/MTCD/Publications/PDF/te_1468_web.pdf#page=22.
K. S. Kim, M. L. Williams, D. Wiarda, et al., Development of the multigroup cross section library for the CASL neutronics simulator MPACT: Method and procedure. Ann. Nucl. Energy 133, 46-58(2019). doi: 10.1016/j.anucene.2019.05.010http://doi.org/10.1016/j.anucene.2019.05.010.
M. Edenius, K. Ekberg, B. H. Forssén, et al., CASMO-4, A Fuel Assembly Burnup Program, User’s Manual. (Studsvik Am. Inc, 1995)
M. B. Chadwick, P. Obložinský, M. Herman, et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nucl. Data Sheets107(12), 2931-3060(2006). doi: 10.1016/j.nds.2006.11.001http://doi.org/10.1016/j.nds.2006.11.001.
A. Hebert, G. Marleau, Generalization of the Stamm’ler method for the self-shielding of resonant isotopes in arbitrary geometries. Nucl. Sci. Eng. 108(3), 230-239(1991). doi: 10.13182/NSE90-57http://doi.org/10.13182/NSE90-57.
A. Hébert, Revisiting the Stamm’ler self-shielding method. Paper presented at the Conference: 25th CNS Annual Conference, (Toronto, Canada, 2004)
A. T. Godfrey, VERA core physics benchmark progression problem specifications, (Oak Ridge National Laboratory, America, 2014). doi: 10.1111/codi.12168http://doi.org/10.1111/codi.12168.
D. Lee, K. Smith, J. Rhodes, The impact of 238U resonance elastic scattering approximations on thermal reactor Doppler reactivity. Paper presented at the Int. Conf. Phys. React. 2008, PHYSOR 2008, (Interlaken, Switzerland, 2008)
G.S. Hoovler, M.N. Baldwin, R.L. Eng et al., Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel. Nucl. Technol. 51(2), 217-237(1980). doi: 10.13182/nt80-a32604http://doi.org/10.13182/nt80-a32604.
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution