1.Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
2.University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
3.Spallation Neutron Source Science Center, Dongguan, 523803, China
4.Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Dongguan 523803, China
binzhou@ihep.ac.cn (Bin Zhou);
tjliang@ihep.ac.cn (Tianjiao Liang)
Scan for full text
Jun-Yang Chen, Jian-Fei Tong, Zhi-Liang Hu, et al. Evaluation of neutron beam characteristics for D-BNCT01 facility. [J]. Nuclear Science and Techniques 33(1):12(2022)
Jun-Yang Chen, Jian-Fei Tong, Zhi-Liang Hu, et al. Evaluation of neutron beam characteristics for D-BNCT01 facility. [J]. Nuclear Science and Techniques 33(1):12(2022) DOI: 10.1007/s41365-022-00996-1.
An accelerator-based Boron Neutron Capture Therapy (AB-BNCT) experimental facility called D-BNCT01 has been recently completed and is currently able to generate a high-intensity neutron beam for BNCT related research. In this study, we perform several experiments involving water phantoms to validate the Monte Carlo simulation results and analyze the neutron beam characteristics. According to our measurements, D-BNCT01 may generate a neutron flux about 1.2×10,8, n/cm,2,/s at the beam port using a 5 kW proton beam. Our results, also show that the thermal neutron flux depth distribution inside the water phantom is in good agreement with simulations. We conclude that D-BNCT01 may be effectively employed for BNCT research.
Neutron beamBoron Neutron Capture TherapyWater phantom
M. Wang, Y. Tong, Q. Luo et al., Study of ATP borate ester effects on cell sensitization to radiation emitted by a nuclear reactor. Nucl. Sci. Tech. 31, 2 (2020). doi: 10.1007/s41365-019-0713-0http://doi.org/10.1007/s41365-019-0713-0
R.F. Barth, J.A. Coderre, M.G.H. Vicente et al., Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res. 11, 3987 (2005). doi: 10.1158/1078-0432.Ccr-05-0035http://doi.org/10.1158/1078-0432.Ccr-05-0035
H. Hatanaka, Clinical results of boron neutron capture therapy. Basic Life Sci. 54, 15 (1990).
D.A. Allen, T.D. Beynon, S. Green, Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Med. Phys. 26, 71 (1999). doi: 10.1118/1.598479http://doi.org/10.1118/1.598479
D. Cartelli, M.E. Capoulat, T.J. Bergueiro et al., Present status of accelerator-based BNCT: Focus on developments in Argentina. Appl. Radiat. Isot. 106, 18 (2015). doi: 10.1016/j.apradiso.2015.07.031http://doi.org/10.1016/j.apradiso.2015.07.031
C. Ceballos, J. Esposito, S. Agosteo et al., Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL. Appl. Radiat. Isot. 69, 1660 (2011). doi: 10.1016/j.apradiso.2011.01.032http://doi.org/10.1016/j.apradiso.2011.01.032
T.A. Bykov, D.A. Kasatov, A.M. Koshkarev et al., A multichannel neutron flux monitoring system for a boron neutron capture therapy facility. J. Instrum. 14, P12002 (2019). doi: 10.1088/1748-0221/14/12/p12002http://doi.org/10.1088/1748-0221/14/12/p12002
M. Kim, B.H. Hong, I. Cho et al., Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation. Nucl. Eng. Technol. 53, 626 (2021). doi: 10.1016/j.net.2020.07.010http://doi.org/10.1016/j.net.2020.07.010
H. Kumada, K. Takada, S. Tanaka et al., Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot. 165, 109246 (2020). doi: 10.1016/j.apradiso.2020.109246http://doi.org/10.1016/j.apradiso.2020.109246
P.E. Tsai, Y.H. Liu, H.M. Liu et al., Characterization of a BNCT beam using neutron activation and indirect neutron radiography. Radiat. Meas. 45, 1167 (2010). doi: 10.1016/j.radmeas.2010.07.008http://doi.org/10.1016/j.radmeas.2010.07.008
A. Ishikawa, A. Yamazaki, K. Watanabe et al., A comparison between simulation and experimental results for depth profile of Li-6 reaction rate in a water phantom of BNCT using a small Li-6-based scintillator neutron detector with an optical fiber. Radiat. Meas. 133, 106270 (2020). doi: 10.1016/j.radmeas.2020.106270http://doi.org/10.1016/j.radmeas.2020.106270
L.S. Waters, G.W. McKinney, J.W. Durkee et al., The MCNPX Monte Carol radiation transport code, Paper presented at the Hadronic Shower Simulation Workshop (Batavia, IL, 6-8 Sep. 2007)
H. Liskien, A. Paulsen, Neutron production cross sections and energies for the reactions 7Li (p, n) 7Be and 7Li (p, n) 7Be∗. At. Data Nucl. Data Tables. 15, 57 (1975). doi: 10.1016/0092-640X(75)90004-2http://doi.org/10.1016/0092-640X(75)90004-2
G.F. Knoll, Radiation detection and measurement, 4th edn. (John Wiley & Sons Inc., New Jersey, 2010), pp. 767-774
M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887 (2011). doi: 10.1016/j.nds.2011.11.002http://doi.org/10.1016/j.nds.2011.11.002
A. Trkov, P.J. Griffin, S.P. Simakov et al., IRDFF-II: A new neutron metrology library. Nucl. Data Sheets 163, 1 (2020). doi: 10.1016/j.nds.2019.12.001http://doi.org/10.1016/j.nds.2019.12.001
Y.H. Liu, C.K. Huang, P.E. Tsai et al., BNCT epithermal neutron beam mapping by using indirect neutron radiography. Nucl. Technol. 168, 354 (2009). doi: 10.13182/nt09-a9208http://doi.org/10.13182/nt09-a9208
F. Acerbi, S. Gundacker, Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res. A 926, 16 (2019). doi: 10.1016/j.nima.2018.11.118http://doi.org/10.1016/j.nima.2018.11.118
P.P. Calo, F. Ciciriello, S. Petrignani et al., SiPM readout electronics. Nucl. Instrum. Methods Phys. Res. A 926, 57 (2019). doi: 10.1016/j.nima.2018.09.030http://doi.org/10.1016/j.nima.2018.09.030
S. Nakamura, H. Igaki, M. Ito et al., Neutron flux evaluation model provided in the accelerator-based boron neutron capture therapy system employing a solid-state lithium target. Sci. Rep. 11, 8090 (2021). doi: 10.1038/s41598-021-87627-8http://doi.org/10.1038/s41598-021-87627-8
S. Nakamura, H. Igaki, M. Ito et al., Characterization of the relationship between neutron production and thermal load on a target material in an accelerator-based boron neutron capture therapy system employing a solid-state Li target. PLoS One 14, e0225587 (2019). doi: 10.1371/journal.pone.0225587http://doi.org/10.1371/journal.pone.0225587
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution