1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
hezhg@ustc.edu.cn
shancai@ustc.edu.cn
Scan for full text
Wen-Xing Wang, Cheng Li, Zhi-Gang He, et al. Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. [J]. Nuclear Science and Techniques 33(3):23(2022)
Wen-Xing Wang, Cheng Li, Zhi-Gang He, et al. Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. [J]. Nuclear Science and Techniques 33(3):23(2022) DOI: 10.1007/s41365-022-01000-6.
The Hefei Advanced Light Facility (HALF) proposed by the National Synchrotron Radiation Laboratory (NSRL) is a Diffraction Limited Storage Ring (DLSR), which plans to use a full energy linac as the injector. To ensure injection efficiency, the injection beam needs to have low emittance. Therefore, a photocathode radio frequency (RF) gun was developed in the HALF R,&,D project. The gun is designed to deliver high-quality electron bunches with a typically 0.5 nC charge and ,∼, 4.5 MeV energy with low emittance. The initial system commission with an electron beam was completed at the end of 2020, and a stable 1.2 –1.4 mm ,⋅, mrad emittance with a bunch charge of 500 pC was demonstrated. In this paper, we report the experimental results and experience obtained during the commission, including the RF gun, drive laser system, and beam diagnostics.
High brightness electron beamPhotoinjector laser shapingTransverse emittance
L. Wang, Z.H. Baipresenter, N. Hu et al., Hefei advanced light source: a future soft X-ray diffraction-limited storage ring at NSRL. in IPAC’18, 9th International Particle Accelerator Conference, Vancouver, Canada, 2018. International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2018), 4598-4600. doi: 10.18429/JACoW-IPAC2018-THPMK120http://doi.org/10.18429/JACoW-IPAC2018-THPMK120
Z.H. Bai, W. Li, L. Wang et al., Design of the second version of the HALS Storage Ring lattice. in IPAC’18, 9th International Particle Accelerator Conference, Vancouver, Canada, 2018. International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2018), 4601-4604. doi: 10.18429/JACoW-IPAC2018-THPMK121http://doi.org/10.18429/JACoW-IPAC2018-THPMK121
Z.H. Bai, G.Y. Feng, T.L. He et al., A Modified Hybrid 6BA Lattice for the HALF Storage Ring. in IPAC'21, 12th International Particle Accelerator Conference, Campinas, SP, Brazil, 2021. International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), 407-409. doi: 10.18429/JACoW-IPAC2021-MOPAB112http://doi.org/10.18429/JACoW-IPAC2021-MOPAB112
G. Liu, W. Li, L. Wang et al., Beam injection with a pulsed nonlinear magnet into the HALF storage ring. in IPAC'21, 12th International Particle Accelerator Conference, Campinas, SP, Brazil, 2021. International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), 2878-2880. doi: 10.18429/JACoW-IPAC2021-WEPAB119http://doi.org/10.18429/JACoW-IPAC2021-WEPAB119
W. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photonics 1, 336-342 (2007). doi: 10.1038/nphoton.2007.76http://doi.org/10.1038/nphoton.2007.76
P. Emma, R. Akre, J. Galayda et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics 4, 641-647 (2010). doi: 10.1038/nphoton.2010.176http://doi.org/10.1038/nphoton.2010.176
E. Allaria, D. Castronovo, M. Zangrando et al., Two-stage seeded soft-X-ray free-electron laser. Nature Photonics 7, 913-918 (2013). doi: 10.1038/nphoton.2013.277http://doi.org/10.1038/nphoton.2013.277
H.-S. Kang, C.-K. Min, I.S. Ko et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nature Photonics, 11: 708-713 (2017). doi: 10.1038/s41566-017-0029-8http://doi.org/10.1038/s41566-017-0029-8
C.J. Milne, T. Schietinger, M. Aiba et al., SwissFEL: The Swiss X-ray free electron laser. Applied Sciences 7, 720 (2017). doi: 10.3390/app7070720http://doi.org/10.3390/app7070720
R. Akre, D. Dowell, P. Emma et al., Commissioning the linac coherent light source injector. Phys. Rev. ST Accel. Beams 11, 030703 (2008). doi: 10.1103/PhysRevSTAB.11.030703http://doi.org/10.1103/PhysRevSTAB.11.030703
S. G. Anderson et al., in Commissioning of a high-brightness photoinjector for compton scattering x-ray sources. PAC'07, 2007 IEEE Particle Accelerator Conference, Albuquerque, New Mexico, USA, June 2007. International Particle Accelerator Conference, (IEEE, 2007), p. 1242-1244. doi: 10.1109/PAC.2007.4441043http://doi.org/10.1109/PAC.2007.4441043
H. Chen, L. Yan, C. Tang et al., Commissioning the photoinjector of a gamma-ray light source. Phys. Rev. Accel. Beams 22, 053403 (2019). doi: 10.1103/PhysRevAccelBeams.22.053403http://doi.org/10.1103/PhysRevAccelBeams.22.053403
L.W. Feng, L. Lin, S. L. Huang et al., High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector. Applied Physics Letters 107, 224101 (2015). doi: 10.1063/1.4936192http://doi.org/10.1063/1.4936192
P. Musumeci, J.T. Moody, C.M. Scoby et al., Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector. Review of Scientific Instruments 81, 013306 (2010). doi: 10.1063/1.3292683http://doi.org/10.1063/1.3292683
F. Qi, Z. Ma, J. Zhang et al., Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020). doi: 10.1103/PhysRevLett.124.134803http://doi.org/10.1103/PhysRevLett.124.134803
R. Li, W. Huang, C. Tang et al., Note: Single-shot continuously time-resolved MeV ultrafast electron diffraction. Review of Scientific Instruments 81, 036110 (2010). doi: 10.1063/1.3361196http://doi.org/10.1063/1.3361196
H.W. Kim, N.A. Vinokurov, I.H. Baek et al., Towards jitter-free ultrafast electron diffraction technology. Nature Photonics 14, 1-5 (2020). doi: 10.1038/s41566-019-0566-4http://doi.org/10.1038/s41566-019-0566-4
K. Togawa, T. Shintake, T. Inagaki et al., CeB6 electron gun for low-emittance injector. Phys. Rev. ST Accel. Beams 10, 020703 (2007). doi: 10.1103/PhysRevSTAB.10.020703http://doi.org/10.1103/PhysRevSTAB.10.020703
T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics 6, 540-544 (2012). doi: 10.1038/nphoton.2012.141http://doi.org/10.1038/nphoton.2012.141
D.T. Palmer, R.H. Miller, H. Winick et al., Microwave measurements and beam dynamics simulations of the BNL/SLAC/UCLA emittance-compensated 1.6-cell photocathode rf gun. Proc. SPIE 2522, Electron-Beam Sources and Charged-Particle Optics, (25 September 1995), 2522, 514-526 (1995). doi: 10.1117/12.221609http://doi.org/10.1117/12.221609
K.T. McDonald, Design of the laser-driven RF electron gun for the BNL accelerator test facility. IEEE Transactions on Electron Devices, 35, 2052-2059 (1988). doi: 10.1109/16.7427http://doi.org/10.1109/16.7427
L. Zheng, Y. Du, Z. Zhang et al., Development of S-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Meth. A 834, 98-107 (2016). doi: 10.1016/j.nima.2016.07.015http://doi.org/10.1016/j.nima.2016.07.015
J. Yang, F. Sakai, T. Yanagida et al., Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun. J. Appl. Phys. 92, 1608-1612 (2002). doi: 10.1063/1.1487457http://doi.org/10.1063/1.1487457
M. Gross, H.J. Qian, P. Boonpornprasert et al., Emittance reduction of RF photoinjector generated electron beams by transverse laser beam shaping. J. Phys. Conference Series, 1350, 012046 (2019). doi: 10.18429/JACoW-IPAC2019-TUPTS012http://doi.org/10.18429/JACoW-IPAC2019-TUPTS012
F. Zhou, A. Brachmann, P. Emma et al., Impact of the spatial laser distribution on photocathode gun operation. Phys. Rev. ST Accel. Beams 15, 090701 (2012). doi: 10.1103/PhysRevSTAB.15.090701http://doi.org/10.1103/PhysRevSTAB.15.090701
T. Rao, D.H. Dowell, An engineering guide to photoinjectors. arXiv: 1403.7539
K. Floettmann, ASTRA User Manual.
S.G. Anderson, J.B. Rosenzweig, G.P. LeSage et al., Space-charge effects in high brightness electron beam emittance measurements. Phys. Rev. ST Accel. Beams 5, 014201 (2002). doi: 10.1103/PhysRevSTAB.5.014201http://doi.org/10.1103/PhysRevSTAB.5.014201
M. Ferrario, D. Alesini, A. Bacci et al., Direct measurement of the double emittance minimum in the beam dynamics of the sparc high-brightness photoinjector. Phys. Rev. Lett. 99, 234801 (2007). doi: 10.1103/PhysRevLett.99.234801http://doi.org/10.1103/PhysRevLett.99.234801
D.H. Dowell, J.F. Schmerge, Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. ST Accel. Beams 12, 074201 (2009). doi: 10.1103/PhysRevSTAB.12.074201http://doi.org/10.1103/PhysRevSTAB.12.074201
Y. Ding, A. Brachmann, F.-J. Decker et al., Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source. Phys. Rev. Lett. 102, 254801 (2009). doi: 10.1103/PhysRevLett.102.254801http://doi.org/10.1103/PhysRevLett.102.254801
M.J. De Loos, S.B. Van Der Geer, General Particle Tracer: A new 3D code for accelerator and beamline design. in 5th European Particle Accelerator Conference, 1241 (1996).
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution