1.Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803, China
chenfs@ihep.ac.cn
Scan for full text
Xian-Jing Sun, Fu-San Chen, Xiang-Chen Yang, et al. Superconducting multipole wiggler with large magnetic gap for HEPS-TF. [J]. Nuclear Science and Techniques 33(2):16(2022)
Xian-Jing Sun, Fu-San Chen, Xiang-Chen Yang, et al. Superconducting multipole wiggler with large magnetic gap for HEPS-TF. [J]. Nuclear Science and Techniques 33(2):16(2022) DOI: 10.1007/s41365-022-01001-5.
A 16-pole superconducting multipole wiggler with a large gap of 68 mm was designed and fabricated to serve as a multipole wiggler for HEPS-TF. The wiggler consists of 16 pairs of NbTi superconducting coils with a period length of 170 mm, and its maximum peak field is 2.6 Tesla. In magnet design, magnet poles were optimized. Furthermore, the Lorentz force on the coils and electromagnetic force between the upper and lower halves were computed and analyzed along with the stored energy and inductance at different currents. To enhance the critical current of the magnet coil, all the pole coils selected for the magnet exhibited excellent performance, and appropriate prestress derived from the coil force analysis was applied to the pole coils during magnet assembly. The entire magnet structure was immersed in 4.2-K liquid helium in the cryostat cooled solely by four two-stage cryocoolers, and the performance test of the superconducting wiggler were appropriately completed. Based on the measured results, the first and second field integrals on the axis of the superconducting wiggler were significantly improved at different field levels after the compensation of the corrector coils. Subsequently, the wiggler was successfully installed in the storage ring of BEPCII operation with beams.
Superconducting multipole wigglerForce analysisQuench protectionMagnetic field measurementHEPS-TFCryostat
Y. Jiao, Z. Duan, Y.Y. Guo et al., Progress in the Design and related studies on the High Energy Photon Source. Phys. Procedia 84, 40-46 (2016). doi: 10.1016/j.phpro.2016.11.008http://doi.org/10.1016/j.phpro.2016.11.008
Y. Jiao, G. Xu, X. Cui et al., The HEPS project. J. Synchrotron Radiat. 25, 1611-1618 (2018). doi: 10.1107/S1600577518012110http://doi.org/10.1107/S1600577518012110
Y. Jiao, X. Cui, Z. Duan et al., Beam Dynamics Study in the HEPS Storage Ring. IPAC2019, Melbourne, Australia, 1203-1207 (2019). doi: 10.18429/JACoW-IPAC2019-TUZPLS2http://doi.org/10.18429/JACoW-IPAC2019-TUZPLS2
J. He, Y.F. Sui, Y.H. Lu et al., Preliminary study on detection and cleaning of parasitic bunches. Nucl. Sci. Tech. 32, 114 (2021). doi: 10.1007/s41365-021-00948-1http://doi.org/10.1007/s41365-021-00948-1
T.M. Huang, P. Zhang, Z.Q. Li et al., Development of a low-loss magnetic-coupling pickup for 166.6-MHz quarter-wave beta=1 superconducting cavities. Nucl. Sci. Tech. 31, 87 (2020). doi: 10.1007/s41365-020-00795-6http://doi.org/10.1007/s41365-020-00795-6
E.S. Tang, Y.Y. Huang, Y.R. Wu et al., Radiation character of 3W1 permanent magnet multipole wiggler. High energy physics and nuclear physics, Vol.22, No.10, 951-954 (1998). http://cpc.ihep.ac.cn/en/article/id/eae0a18c-4c8d-455e-9a2f-2003c018ca6dhttp://cpc.ihep.ac.cn/en/article/id/eae0a18c-4c8d-455e-9a2f-2003c018ca6d
H. S. Chen, The BEPCII project. Proceedings of the 31st International Conference On High Energy Physics, 936-938 (2002). doi: 10.1016/B978-0-444-51343-4.50242-8http://doi.org/10.1016/B978-0-444-51343-4.50242-8
S.V. Khruschev, E.A. Kuper, V.H. Lev et al., Superconducting 63-pole 2T wiggler for Canadian Light Source, Nuclear Instruments and Methods in Physics Research A, 575, 38-41 (2007). doi: 10.1016/j.nima.2007.01.019http://doi.org/10.1016/j.nima.2007.01.019
N. Mezentsev, Superconducting multipole wigglers for generation of synchrotron radiation. Proceeding of RuPAC2014, Obninsk, Kaluga Region, 296-300 (2014). https://accelconf.web.cern.ch/rupac2014/papers/thz01.pdfhttps://accelconf.web.cern.ch/rupac2014/papers/thz01.pdf
S. Khrushchev, N. Mezentsev, V. Lev, et al., Superconducting multipole wigglers: state of art. Proceedings of the 5th International Particle Accelerator Conference 2014. WEPRI091, 4103-4106 (2014) doi: 10.18429/JACoW-IPAC2014-WEPRI091http://doi.org/10.18429/JACoW-IPAC2014-WEPRI091
A. Batrakov, V. Jurba, S. Khrushchev et al., A superconducting 3.5T multipole wiggler for the ELETTRA storage ring, Proceeding of EPAC2002, Paris, France, 2634-2636 (2002). https://accelconf.web.cern.ch/e02/PAPERS/TUPLE044.pdfhttps://accelconf.web.cern.ch/e02/PAPERS/TUPLE044.pdf
C.S. Hwang, C.H. Chang, H.H. Chen et al, Superconducting wiggler with semi-cold beam duct at Taiwan light source, Nucl. Instrum. Meth. A, 556, 607-615 (2006). doi: 10.1016/j.nima.2005.10.116http://doi.org/10.1016/j.nima.2005.10.116
Nikolay Mezentsev, Superconducting wigglers and undulators, JAI seminar, 2016. https://uspas.fnal.gov/materials/16CSU/UnifyingPhysics/2016_Mezentsev.pdfhttps://uspas.fnal.gov/materials/16CSU/UnifyingPhysics/2016_Mezentsev.pdf
Daniel , Superconducting wiggler magnets for beam-emittance damping rings (T. U. Bergakademie Freiberg, 2012), pp33-48. https://cds.cern.ch/record/1435176/files/CERN-THESIS-2012-028.pdfhttps://cds.cern.ch/record/1435176/files/CERN-THESIS-2012-028.pdf
M. Fedurin P. Mortazavi, J. Murphy et al., Upgrade alternatives for the NSLS superconducting wiggler. Proceedings of PAC07 New Mexico, USA, pp. 1335-1337 (2007). https://accelconf.web.cern.ch/p07/PAPERS/TUPMS071.PDFhttps://accelconf.web.cern.ch/p07/PAPERS/TUPMS071.PDF
H.H. Chen, C.S. Hwang, C.H. Chang, et al., Design of mechanical structure and cryostat for iasw superconducting wiggler at NSRRC. Proceedings of PAC07, USA, MOPAN091. pp. 374-376 (2007). doi: 10.1109/PAC.2007.4440216http://doi.org/10.1109/PAC.2007.4440216
M.F. Xu, X.Z. Zhang, R. Ye et al., Design, assembly, and pre-commissioning of cryostat for 3W1 superconducting wiggler magnet. Nucl. Sci. Tech. 31, 113 (2020). doi: 10.1007/s41365-020-00816-4http://doi.org/10.1007/s41365-020-00816-4
J.D. Herbert, O.B. Malyshev, K.J. Middleman et al., Design of the vacuum system for diamond, the UK third generation light source. Vac. 73(2), 219-224 (2004). doi: 10.1016/j.vacuum.2003.12.019http://doi.org/10.1016/j.vacuum.2003.12.019
Y.S. Choi, M.S. Kim, Performance test of current lead cooled by a cryocooler in low temperature superconducting magnet system. Physica C 494, 355-359 (2013). doi: 10.1016/j.physc.2013.04.085http://doi.org/10.1016/j.physc.2013.04.085
Martin N. Wilson, Superconducting magnets (Oxford University Press Inc., New York, 1997), pp. 200-232.
E. Mashkina, B. Kostka, E. Steffens et al., Magnetic Measurement system for superconductive coils, Proceeding of EPAC08, Genoa, Italy, 2291-2293 (2008). https://accelconf.web.cern.ch/e08/papers/wepc121.pdfhttps://accelconf.web.cern.ch/e08/papers/wepc121.pdf
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution