1.Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
shaoweilan@mails.ccnu.edu.cn
shiss@mail.ccnu.edu.cn
Scan for full text
Shao-Wei Lan, Shu-Su Shi. Anisotropic flow in high baryon density region. [J]. Nuclear Science and Techniques 33(2):21(2022)
Shao-Wei Lan, Shu-Su Shi. Anisotropic flow in high baryon density region. [J]. Nuclear Science and Techniques 33(2):21(2022) DOI: 10.1007/s41365-022-01006-0.
Collective flow is a powerful tool used to analyze the properties of a medium created during high-energy nuclear collisions. Here, we report a systematic study of the first two Fourier coefficients ,v,1, and ,v,2, of the proton and ,π,+, from Au+Au collisions in the energy range ,, = 2.11 – 4.9 GeV within the framework of a hadronic transport model (UrQMD). Recent results from the STAR experiment were used to test the model calculations. A mean-field mode with strong repulsive interaction is needed to reproduce the 10–40% data at 3 GeV. This implies that hadronic interactions play an important role in the collective flow development in the high-baryon-density region. The mean values of the freeze-out time for protons and ,π,+, are shifted earlier owing to the additional repulsive interactions. We predict the energy dependence of the mean values of the transverse momentum ,,v,1, and ,v,2, for both protons and ,π,+, from the Au+Au collisions.
Heavy-ion collisionsQCD phase diagramUrQMDCollective flowMean-field potential
A. Bzdak, S. Esumi, V. Koch et al., Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 853, 1-87 (2020). doi: 10.1016/j.physrep.2020.01.005http://doi.org/10.1016/j.physrep.2020.01.005
X. Luo, S. Shi, Y. Zhang et al., A study of the properties of the QCD phase diagram in high-energy nuclear collisions. Particles 3, 278-307 (2020). doi: 10.3390/particles3020022http://doi.org/10.3390/particles3020022
C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
Z. Tang, W. Zha, Y. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2020). doi: 10.1007/s41365-020-00785-8http://doi.org/10.1007/s41365-020-00785-8
Z. Lin, L. Zheng, Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 32, 113 (2021). doi: 10.1007/s41365-021-00944-5http://doi.org/10.1007/s41365-021-00944-5
S. Wu, C. Shen, H. Song, Dynamically exploring the QCD matter at finite temperatures and densities: A short review. Chin. Phys. Lett. 38, 081201 (2021). doi: 10.1088/0256-307X/38/8/081201http://doi.org/10.1088/0256-307X/38/8/081201
E. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150-153 (1978). doi: 10.1016/0370-2693(78)90370-2http://doi.org/10.1016/0370-2693(78)90370-2
A. Adare, S. Afanasiev, C. Aidala et al. (PHENIX Collaboration), Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at = 200 GeV. Phys. Rev. Lett. 98, 162301 (2007). doi: 10.1103/PhysRevLett.98.162301http://doi.org/10.1103/PhysRevLett.98.162301
B. I. Abelev, M.M. Aggarwal, Z. Ahammed et al. (STAR Collaboration), Partonic flow and ϕ-meson production in Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 99, 112301 (2007). doi: 10.1103/PhysRevLett.99.112301http://doi.org/10.1103/PhysRevLett.99.112301
L. Adamczyk, J.K. Adkins, G. Agakishiev et al. (STAR Collaboration), Measurement of D0 azimuthal anisotropy at midrapidity in Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 118, 212301 (2017). doi: 10.1103/PhysRevLett.118.212301http://doi.org/10.1103/PhysRevLett.118.212301
K. Aamodt, B. Abelev, A. Abrahantes Quintana et al. (ALICE Collaboration), Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. Lett. 107, 032301 (2011). doi: 10.1103/PhysRevLett.107.032301http://doi.org/10.1103/PhysRevLett.107.032301
G. Aad, B. Abbott, J. Abdallah et al. (ATLAS Collaboration), Measurement of the azimuthal anisotropy for charged particle production in = 2.76 TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 86, 014907 (2012). doi: 10.1103/PhysRevC.86.014907http://doi.org/10.1103/PhysRevC.86.014907
Z. Han, B. Chen and Y. Liu, Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density. Chin. Phys. Lett. 37, 112501 (2020). doi: 10.1088/0256-307x/37/11/112501http://doi.org/10.1088/0256-307x/37/11/112501
H. Stöcker and W. Greiner, High energy heavy ion collisions—probing the equation of state of highly excited hardronic matter. Phy. Rep. 137, 277-392 (1986). doi: 10.1016/0370-1573(86)90131-6http://doi.org/10.1016/0370-1573(86)90131-6
Y. Nara, H. Niemi, J. Steinheimer et al., Equation of state dependence of directed flow in a microscopic transport model. Phys. Lett. B 769, 543-548 (2017). doi: 10.1016/j.physletb.2017.02.020http://doi.org/10.1016/j.physletb.2017.02.020
Y. Nara, H. Niemi, A. Ohnishi et al., Examination of directed flow as a signature of the softest point of the equation of state in QCD matter. Phys. Rev. C 94, 034906 (2016). doi: 10.1103/PhysRevC.94.034906http://doi.org/10.1103/PhysRevC.94.034906
C. Zhang, J. Chen, X. Luo et al., Beam energy dependence of the squeeze-out effect on the directed and elliptic flow in Au + Au collisions in the high baryon density region. Phys. Rev. C 97, 064913 (2018). doi: 10.1103/PhysRevC.97.064913http://doi.org/10.1103/PhysRevC.97.064913
L. Adamczyk, J.K. Adkins, G. Agakishiev et al. (STAR Collaboration), Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett. 112, 162301 (2014). doi: 10.1103/PhysRevLett.112.162301http://doi.org/10.1103/PhysRevLett.112.162301
J. Adam, L. Adamczyk, J.R. Adams et al. (STAR Collaboration), Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations. Phys. Rev. Lett. 126, 092301 (2021). doi: 10.1103/PhysRevLett.126.092301http://doi.org/10.1103/PhysRevLett.126.092301
H. Sorge, Elliptical flow: A signature for early pressure in ultrarelativistic nucleus-nucleus collisions. Phys. Rev. Lett. 78, 2309 (1997). doi: 10.1103/PhysRevLett.78.2309http://doi.org/10.1103/PhysRevLett.78.2309
J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229 (1992). doi: 10.1103/PhysRevD.46.229http://doi.org/10.1103/PhysRevD.46.229
A. M. Poskanzer and S. A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671 (1998). doi: 10.1103/PhysRevC.58.1671http://doi.org/10.1103/PhysRevC.58.1671
M. Abdallah et al. (STAR Collaboration), Disappearance of partonic collectivity in = 3 GeV Au+Au collisions at RHIC. arXiv:2108.00908 [nucl-ex].
S. Lan, (for the STAR Collaboration), Anisotropic Flow Measurements of Identified Particles in the STAR Experiment. CPOD 2021, arXiv:2109.10983 [nucl-ex].
J. Cleymans, H. Oeschler, K. Redlich et al., Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 73, 034905 (2006). doi: 10.1103/PhysRevC.73.034905http://doi.org/10.1103/PhysRevC.73.034905
STAR Note 0598: BES-II whitepaper: Studying the phase diagram of QCD matter at RHIC. http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598.
T. Ablyazimov, A. Abuhoza, R.P. Adak et al. (CBM Collaboration), Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 53, 60 (2017). doi: 10.1140/epja/i2017-12248-yhttp://doi.org/10.1140/epja/i2017-12248-y
V. Kekelidze, A. Kovalenko, R. Lednicky et al., Prospects for the dense baryonic matter research at NICA. Nucl. Phys. A 956, 846-849 (2016). doi: 10.1016/j.nuclphysa.2016.03.019http://doi.org/10.1016/j.nuclphysa.2016.03.019
J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Meth. B 317, 263-265 (2013). doi: 10.1016/j.nimb.2013.08.046http://doi.org/10.1016/j.nimb.2013.08.046
L. Lyu, H. Yi, L.M. Duan et al., Simulation and prototype testing of multi-wire drift chamber arrays for the CEE. Nucl. Sci. Tech. 31, 11 (2020). doi: 10.1007/s41365-019-0716-xhttp://doi.org/10.1007/s41365-019-0716-x
S. A. Bass, M. Belkacem, M. Brandstetter et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255 (1998). doi: 10.1016/S0146-6410(98)00058-1http://doi.org/10.1016/S0146-6410(98)00058-1
M. Bleicher, E. Zabrodin, C. Spieles et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G 25, 1859 (1999). doi: 10.1088/0954-3899/25/9/308http://doi.org/10.1088/0954-3899/25/9/308
Y. Gao, F. Liu, A.H. Tang, Directed flow of transported and nontransported protons in Au + Au collisions from an ultrarelativistic quantum molecular dynamics model. Phys. Rev. C 86, 044901 (2012). doi: 10.1103/PhysRevC.86.044901http://doi.org/10.1103/PhysRevC.86.044901
E.L. Bratkovskaya, M. Bleicher, M. Reiter et al., Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions. Phys. Rev. C 69, 054907 (2004). doi: 10.1103/PhysRevC.69.054907http://doi.org/10.1103/PhysRevC.69.054907
H. Kruse, B.V. Jacak, H. Stoecker, Microscopic theory of pion production and sidewards flow in heavy-ion collisions. Phys. Rev. Lett. 54, 289 (1985). doi: 10.1103/PhysRevLett.54.289http://doi.org/10.1103/PhysRevLett.54.289
J. J. Molitoris, H. Stöcker, Further evidence for a stiff nuclear equation of state from a transverse-momentum analysis of Ar(1800 MeV/nucleon) + KCl. Phys. Rev. C 32, 346 (1985). doi: 10.1103/PhysRevC.32.346http://doi.org/10.1103/PhysRevC.32.346
A.B. Larionov, W. Cassing, C. Greiner et al., Squeeze-out of nuclear matter in peripheral heavy-ion collisions and momentum-dependent effective interactions. Phys. Rev. C 62, 064611 (2000). doi: 10.1103/PhysRevC.62.064611http://doi.org/10.1103/PhysRevC.62.064611
P. Hillmann, J. Steinheimer, M. Bleicher, Directed, elliptic and triangular flow of protons in Au+Au reactions at 1.23 A GeV: a theoretical analysis of the recent HADES data. J. Phys. G 45, 085101 (2018). doi: 10.1088/1361-6471/aac96fhttp://doi.org/10.1088/1361-6471/aac96f
Y.J. Wang, C.C. Guo, Q.F. Li et al. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A–1.0A GeV. Phys. Lett. B 778, 207-212 (2018). doi: 10.1016/j.physletb.2018.01.035http://doi.org/10.1016/j.physletb.2018.01.035
P. Danielewicz, R. Lacey and W.G. Lynch. Determination of the equation of state of dense matter. Science 298 1592-1596 (2002). doi: 10.1126/science.1078070http://doi.org/10.1126/science.1078070
C. Sturm, I. Böttcher, M. Dębowski et al., Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions. Phys. Rev. Lett. 86, 39 (2001). doi: 10.1103/PhysRevLett.86.39http://doi.org/10.1103/PhysRevLett.86.39
Ch. Hartnack, H. Oeschler and J. Aichelin. Hadronic matter is soft. Phys. Rev. Lett. 96, 012302 (2006). doi: 10.1103/PhysRevLett.96.012302http://doi.org/10.1103/PhysRevLett.96.012302
Z. Feng. Constraining the high-density behavior of nuclear equation of state from strangeness production in heavy-ion collisions. Phys. Rev. C 83, 067604 (2011). doi: 10.1103/PhysRevC.83.067604http://doi.org/10.1103/PhysRevC.83.067604
J. Adamczewski-Musch, O. Arnold, C. Behnke et al. (HADES Collaboration), Directed, elliptic, and higher order flow harmonics of protons, deuterons, and tritons in Au + Au collisions at = 2.4 GeV. Phys. Rev. Lett. 125, 262301 (2020). doi: 10.1103/PhysRevLett.125.262301http://doi.org/10.1103/PhysRevLett.125.262301
L. Adamczyk, O. Arnold, C. Behnke et al. (STAR Collaboration), Elliptic flow of identified hadrons in Au+Au collisions at = 7.7-62.4 GeV. Phys. Rev. C 88, 014902 (2013). doi: 10.1103/PhysRevC.88.014902http://doi.org/10.1103/PhysRevC.88.014902
M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high-energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205 (2007). doi: 10.1146/annurev.nucl.57.090506.123020http://doi.org/10.1146/annurev.nucl.57.090506.123020
L. Adamczyk, J.R. Adams, J.K. Adkins et al. (STAR Collaboration), Beam-energy dependence of directed flow of and ϕ in Au + Au collisions. Phys. Rev. Lett. 120, 062301 (2018). doi: 10.1103/PhysRevLett.120.062301http://doi.org/10.1103/PhysRevLett.120.062301
H. Liu, N.N. Ajitanand, J. Alexander et al. (E895 Collaboration), Sideward flow in Au + Au collisions between 2A and 8A GeV. Phys. Rev. Lett. 84, 5488 (2000). doi: 10.1103/PhysRevLett.84.5488http://doi.org/10.1103/PhysRevLett.84.5488
C. Pinkenburg, N.N. Ajitanand, J.M. Alexander et al. (E895 Collaboration), Elliptic Flow: Transition from out-of-plane to in-plane emission in Au + Au collisions. Phys. Rev. Lett. 83, 1295 (1999). doi: 10.1103/PhysRevLett.83.1295http://doi.org/10.1103/PhysRevLett.83.1295
M.S. Abdallah, J. Adam, L. Adamczyk et al. (STAR Collaboration), Flow and interferometry results from Au + Au Collisions at = 4.5 GeV. Phys. Rev. C 103, 034908 (2021). doi: 10.1103/PhysRevC.103.034908http://doi.org/10.1103/PhysRevC.103.034908
M. Abdallah et al. (STAR Collaboration), Probing Strangeness Canonical Ensemble with K-, ϕ(1020) and Production in Au+Au Collisions at = 3 GeV. arXiv:2108.00924 [nucl-ex].
M. Abdallah et al. (STAR Collaboration), Measurements of Proton High Order Cumulants in = 3 GeV Au+Au Collisions and Implications for the QCD Critical Point. arXiv:2112.00240 [nucl-ex].
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution