1.Key laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2.Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
3.Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
chengwei@bnu.edu.cn (W. Cheng)
fszhang@bnu.edu.cn (F.S. Zhang)
Scan for full text
Wei Cheng, Pei-Sheng Liu, Min-Ju Ying, et al. Enhancement in optical absorption of CsI(Na). [J]. Nuclear Science and Techniques 33(3):29(2022)
Wei Cheng, Pei-Sheng Liu, Min-Ju Ying, et al. Enhancement in optical absorption of CsI(Na). [J]. Nuclear Science and Techniques 33(3):29(2022) DOI: 10.1007/s41365-022-01020-2.
Discussions pertaining to enhancement in the luminous efficiency of cesium iodide (CsI) detectors doped with sodium (Na) abound. In this study, the defect structure of one Cs atom replaced by one Na atom is calculated using the ab initio method. Subsequently, the electronic band structures, densities of states, optical absorption spectra, phonons, and transport properties of CsI in perfect and defective structures are investigated. The absorption spectra of CsI with and without Na impurities are compared. It is discovered that the impurity levels in the forbidden band are generated from the shell electron distributions of the impurity atoms, not from lattice distortions. Furthermore, it is discovered that the optical absorption can be enhanced by doping CsI with Na.
CsINa impurityBand structurePhononAbsorption spectrum
X. Ouyang, B. Liu, Recent advances in scintillators boosted by photonic crystals. Mod. Appl. Phys. 8, 040101 (2017). doi: 10.12061/j.issn.2095-6223.2017.040101http://doi.org/10.12061/j.issn.2095-6223.2017.040101
Q. Zhao, Z. Zhang, X. Ouyang, Electronic structure and optical properties of CsI under high pressure: a first-principles study. RSC Adv. 7, 52449-52455 (2017). doi: 10.1039/C7RA08777Bhttp://doi.org/10.1039/C7RA08777B
X. Ouyang, B. Liu, X. Xiang et al., Enhanced light output of CsI(Na) scintillators by photonic crystals. Nucl. Instruments Methods Phys. Res. Sect. A 969, 164007 (2020). doi: 10.1016/j.nima.2020.164007http://doi.org/10.1016/j.nima.2020.164007
C.M. Lewis, J.I. Collar, Response of undoped cryogenic CsI to low-energy nuclear recoils. Phys. Rev. C. 104, 014612 (2021). doi: 10.1103/PhysRevC.104.014612http://doi.org/10.1103/PhysRevC.104.014612
D. Poda, Scintillation in low-temperature particle detectors. Physics (College. Park. Md). 3, 473-535 (2021). doi: 10.3390/physics3030032http://doi.org/10.3390/physics3030032
J.-C. Hsu, Y.-S. Ma, Luminescence of CsI and CsI:Na Films under LED and X-ray Excitation. Coatings. 9, 751 (2019). doi: 10.3390/coatings9110751http://doi.org/10.3390/coatings9110751
F. Liu, X. Ouyang, M. Tang et al., Scaling-induced enhancement of X-ray luminescence in CsI(Na) crystals. Appl. Phys. Lett. 102, 181107 (2013). doi: 10.1063/1.4804368http://doi.org/10.1063/1.4804368
W.J. Weber, Y. Zhang, L. Wang, Review of dynamic recovery effects on ion irradiation damage in ionic-covalent materials. Nucl. Instruments Methods Phys. Res. Sect. B 277, 1-5 (2012). doi: 10.1016/j.nimb.2011.12.043http://doi.org/10.1016/j.nimb.2011.12.043
X. Ying, Z. Ni, Study on the absorption spectra and electronic structures of the CsI crystal with cesium vacancy. Comput. Mater. Sci. 48, 658-661 (2010). doi: 10.1016/j.commatsci.2010.02.036http://doi.org/10.1016/j.commatsci.2010.02.036
S.A. Egorov, E. Rabani, B.J. Berne, Nonradiative relaxation processes in condensed phases: Quantum versus classical baths. J. Chem. Phys. 110, 5238-5248 (1999). doi: 10.1063/1.478420http://doi.org/10.1063/1.478420
Z. Zhang, Q. Zhao, Y. Li, X.-P. Ouyang, Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl). J. Korean Phys. Soc. 68, 1069-1074 (2016). doi: 10.3938/jkps.68.1069http://doi.org/10.3938/jkps.68.1069
W. Khan, C.-H. He, Q.-M. Zhang et al., Design of CsI(TI) detector system to search for lost radioactive source. Nucl. Sci. Tech. 30, 132 (2019). doi: 10.1007/s41365-019-0658-3http://doi.org/10.1007/s41365-019-0658-3
X. Ouyang, B. Liu, X. Xiang et al., CsI(Na) micron-scale particles-based composite material for fast pulsed X-ray detection. Nucl. Instruments Methods Phys. Res. Sect. A 953, 163120 (2020). doi: 10.1016/j.nima.2019.163120http://doi.org/10.1016/j.nima.2019.163120
X.-L. Sun, J.-G. Lü, T. Hu et al., Fast light of CsI(Na) crystals. Chinese Phys. C. 35, 1130-1133 (2011). doi: 10.1088/1674-1137/35/12/009http://doi.org/10.1088/1674-1137/35/12/009
X. Ouyang, B. Liu, X. Xiang et al., Enhancement of the energy resolution of CsI(Na) scintillators by photonic crystals prepared with dry-transfer technique. Opt. Express. 28, 33077 (2020). doi: 10.1364/OE.404815http://doi.org/10.1364/OE.404815
A. Cedillo, P. Cortona, Effect of pressure on cesium iodide band gap. Wuli Huaxue Xuebao/Acta Phys. - Chim. Sin. 34, 208-212 (2018). doi: 10.3866/PKU.WHXB201707031http://doi.org/10.3866/PKU.WHXB201707031 (in Chinese)
MedeA is registered trademark of Materials Design, Inc. https://www.materialsdesign.com/https://www.materialsdesign.com/
Material Studio is Dassault Systèmes BIOVIA software program. https://www.3ds.com/products-services/biovia/https://www.3ds.com/products-services/biovia/.
Abinit is distributed under the terms of the GNU GPL. https://www.abinit.org/https://www.abinit.org/
Quantum Espresso is distributed under the terms of the GNU GPL. http://www.quantum-espresso.org/http://www.quantum-espresso.org/
Z. Zhang, Q. Zhao, X. Ouyang, First-principle study for Tl, Na substitution doping CsI. J. North China Electr. Power Univ. 42, 101 (2015). doi: 10.3969/j.ISSN.1007-2691.2015.06.15http://doi.org/10.3969/j.ISSN.1007-2691.2015.06.15 (in Chinese)
W.G. Liu, Y. Qian, D.X. Zhang et al., Theoretical study of the interaction between hydrogen and 4d alloying atom in nickel. Nucl. Sci. Tech. 28, 1-4 (2017). doi: 10.1007/s41365-017-0235-6http://doi.org/10.1007/s41365-017-0235-6
Y.C. Lu, C.L. Ren, C.Y. Wang et al., First-principles study on the mechanical properties of M2CT2 (M = Ti, Zr, Hf; T = O, F, OH) MXenes. Nucl. Sci. Tech. 30, 1-12 (2019). doi: 10.1007/s41365-019-0688-xhttp://doi.org/10.1007/s41365-019-0688-x.
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758-1775 (1999). doi: 10.1103/PhysRevB.59.1758http://doi.org/10.1103/PhysRevB.59.1758
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). doi: 10.1016/0927-0256(96)00008-0http://doi.org/10.1016/0927-0256(96)00008-0
J. Paier, R. Hirschl, M. Marsman et al., The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005). doi: 10.1063/1.1926272http://doi.org/10.1063/1.1926272
J. Paier, M. Marsman, K. Hummer et al., Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006). doi: 10.1063/1.2187006http://doi.org/10.1063/1.2187006
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Phys. Rev. Lett. 78, 1396-1396 (1997). doi: 10.1103/PhysRevLett.77.3865http://doi.org/10.1103/PhysRevLett.77.3865
J.P.J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). doi: 10.1103/PhysRevLett.77.3865http://doi.org/10.1103/PhysRevLett.77.3865
K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063-4066 (1997). doi: 10.1103/PhysRevLett.78.4063http://doi.org/10.1103/PhysRevLett.78.4063
G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67-71 (2006). doi: 10.1016/j.cpc.2006.03.007http://doi.org/10.1016/j.cpc.2006.03.007
Triloki , R. Rai, B.K. Singh, Optical and structural properties of CsI thin film photocathode. Nucl. Instruments Methods Phys. Res. Sect. A 785, 70-76 (2015). doi: 10.1016/j.nima.2015.02.059http://doi.org/10.1016/j.nima.2015.02.059
H. Zhong, Z.H. Levine, J.W. Wilkins, Linear polarizability calculation for rare-gas atoms in the time-dependent local-density approximation with a scissors operator. Phys. Rev. A. 43, 4629-4636 (1991). doi: 10.1103/PhysRevA.43.4629http://doi.org/10.1103/PhysRevA.43.4629
B. Wei, X. Yu, C. Yang, et al., Low-temperature anharmonicity and the thermal conductivity of cesium iodide. Phys. Rev. B. 99, 184301 (2019). doi: 10.1103/PhysRevB.99.184301http://doi.org/10.1103/PhysRevB.99.184301
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution