1.Department of Physics, Tsinghua University, Beijing 100084, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
4.Uniwersytet Marii Curie Skłodowskiej, Katedra Fizyki Teoretycznej, Lublin 20031, Poland
† dxy17@mails.tsinghua.edu.cn
Scan for full text
Xin-Yue Diao, Fen-Hai Guan, Yi-Jie Wang, et al. Reconstruction of fission events in heavy ion reactions with the Compact Spectrometer for Heavy Ion Experiment. [J]. Nuclear Science and Techniques 33(4):40(2022)
Xin-Yue Diao, Fen-Hai Guan, Yi-Jie Wang, et al. Reconstruction of fission events in heavy ion reactions with the Compact Spectrometer for Heavy Ion Experiment. [J]. Nuclear Science and Techniques 33(4):40(2022) DOI: 10.1007/s41365-022-01024-y.
We report a reconstruction method for fast-fission events in 25 MeV/u ,86,Kr + ,208,Pb reactions at the Compact Spectrometer for Heavy Ion Experiment (CSHINE). The fission fragments (FFs) are measured using three large-area parallel-plate avalanche counters, which can deliver the position and arrival timing information of the fragments. The start timing information is provided by the radio frequency of the cyclotron. Fission events were reconstructed using the velocities of the two FFs. The broadening of both the velocity distribution and azimuthal difference of the FFs decreases with the folding angle, in accordance with the picture that fast fission occurs. The anisotropic angular distribution of the fission axis also consistently reveals the dynamic features of fission events.
Fast fissionHeavy ion reactionsParallel-plate avalanche counterCSHINE
B.A. Li, B.J. Cai, W.J. Xie, et al., Progress in constraining nuclear symmetry energy using neutron star observables since gw170817. Universe 7, 182 (2021). doi: 10.3390/universe7060182http://doi.org/10.3390/universe7060182
B.P. Abbott, R. Abbott, T.D. Abbott, et al., Gw170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). doi: 10.1103/PhysRevLett.119.161101http://doi.org/10.1103/PhysRevLett.119.161101
B.P. Abbott, R. Abbott, T.D. Abbott, et al., Gw170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018). doi: 10.1103/PhysRevLett.121.161101http://doi.org/10.1103/PhysRevLett.121.161101
M.B. Tsang, T.X. Liu, L. Shi, et al., Isospin diffusion and the nuclear symmetry energy in heavy ion reactions. Phys. Rev. Lett. 92, 062701 (2004). doi: 10.1103/PhysRevLett.92.062701http://doi.org/10.1103/PhysRevLett.92.062701
L.W. Chen, C.M. Ko, B.A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevLett.94.032701http://doi.org/10.1103/PhysRevLett.94.032701
M.B. Tsang, W.A. Friedman, C.K. Gelbke, et al., Isotopic scaling in nuclear reactions. Phys. Rev. Lett. 86, 5023–5026 (2001). doi: 10.1103/PhysRevLett.86.5023http://doi.org/10.1103/PhysRevLett.86.5023
L.W. Chen, C.M. Ko, B.A. Li, et al., Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82, 024321 (2010). doi: 10.1103/PhysRevC.82.024321http://doi.org/10.1103/PhysRevC.82.024321
Z. Zhang, L.W. Chen, Constraining the density slope of nuclear symmetry energy at subsaturation densities using electric dipole polarizability in 208Pb. Phys. Rev. C 90, 064317 (2014). doi: 10.1103/PhysRevC.90.064317http://doi.org/10.1103/PhysRevC.90.064317
M.B. Tsang, Y.X. Zhang, P. Danielewicz, et al., Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009). doi: 10.1103/PhysRevLett.102.122701http://doi.org/10.1103/PhysRevLett.102.122701
Y. Zhang, J.L. Tian, W.J. Cheng, et al., Long-time drift of the isospin degree of freedom in heavy ion collisions. Phys. Rev. C 95, 041602 (2017). doi: 10.1103/PhysRevC.95.041602http://doi.org/10.1103/PhysRevC.95.041602
D. Adhikari, H. Albataineh, D. Androic, et al., Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021). doi: 10.1103/PhysRevLett.126.172502http://doi.org/10.1103/PhysRevLett.126.172502
B.T. Reed, F.J. Fattoyev, C.J. Horowitz, et al., Implications of prex-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021). doi: 10.1103/PhysRevLett.126.172503http://doi.org/10.1103/PhysRevLett.126.172503
J. Estee, W.G. Lynch, C.Y. Tsang, et al., Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett. 126, 162701 (2021). doi: 10.1103/PhysRevLett.126.162701http://doi.org/10.1103/PhysRevLett.126.162701
Y.J. Wang, Q.F. Li, Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies. Front. Phys. 15, 44302 (2020). doi: 10.1007/s11467-020-0964-6http://doi.org/10.1007/s11467-020-0964-6
L.M. Lü, H. Yi, Z.G. Xiao, et al., Conceptual design of the hirfl-csr external-target experiment. Sci. China-Phys. Mech. Astron. 60, 012021 (2016). doi: 10.1007/s11433-016-0342-xhttp://doi.org/10.1007/s11433-016-0342-x
L.M. Lü, H. Yi, L.M. Duan, et al., Simulation and prototype testing of multi-wire drift chamber arrays for the cee. Nucl. Sci. Tech. 31, 11 (2020). doi: 10.1007/s41365-019-0716-xhttp://doi.org/10.1007/s41365-019-0716-x
G. Lorusso, S. Nishimura, Z.Y. Xu, et al., β-decay half-lives of 110 neutron-rich nuclei across the n=82 shell gap: Implications for the mechanism and universality of the astrophysical r process. Phys. Rev. Lett. 114, 192501 (2015). doi: 10.1103/PhysRevLett.114.192501http://doi.org/10.1103/PhysRevLett.114.192501
N. Nishimura, T. Kajino, G.J. Mathews, et al., Impact of newβ-decay half-lives on r -process nucleosynthesis. Phys. Rev. C 85, 048801 (2012). doi: 10.1103/PhysRevC.85.048801http://doi.org/10.1103/PhysRevC.85.048801
T. Suzuki, T. Yoshida, T. Kajino, et al., βdecays of isotones with neutron magic number of n=126 and r-process nucleosynthesis. Phys. Rev. C 85, 015802 (2012). doi: 10.1103/PhysRevC.85.015802http://doi.org/10.1103/PhysRevC.85.015802
K. Pomorski, J. Bartel, J. Richert, et al., Evaporation of light particles from a hot, deformed and rotating nucleus. Nucl. Phys. A 605, 87–119 (1996). doi: 10.1016/0375-9474(96)00180-7http://doi.org/10.1016/0375-9474(96)00180-7
P. Schuurmans, J. Camps, P. De Moor, et al., Angular distributions of αparticles emitted by deformed oriented nuclei. Phys. Rev. Lett. 82, 4787–4790 (1999). doi: 10.1103/PhysRevLett.82.4787http://doi.org/10.1103/PhysRevLett.82.4787
Y. Jia, J.D. Bao, Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from langevin dynamics. Phys. Rev. C 75, 034601 (2007). doi: 10.1103/PhysRevC.75.034601http://doi.org/10.1103/PhysRevC.75.034601
Z.H. Liu, J.D. Bao, Role of the coupling between neck and radial degrees of freedom in evolution from dinucleus to mononucleus. Phys. Rev. C 83, 044613 (2011). doi: 10.1103/PhysRevC.83.044613http://doi.org/10.1103/PhysRevC.83.044613
H.F. Zhang, H.F. Zhang, J.Q. Li, et al., Spontaneous fission with β-parameterized quasimolecular shape. Phys. Rev. C 90, 054313 (2014). doi: 10.1103/PhysRevC.90.054313http://doi.org/10.1103/PhysRevC.90.054313
Y. Tanimura, D. Lacroix, S. Ayik, Microscopic phase-space exploration modeling of 258Fm spontaneous fission. Phys. Rev. Lett. 118, 152501 (2017). doi: 10.1103/PhysRevLett.118.152501http://doi.org/10.1103/PhysRevLett.118.152501
H. Tao, J. Zhao, Z.P. Li, et al., Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C 96, 024319 (2017). doi: 10.1103/PhysRevC.96.024319http://doi.org/10.1103/PhysRevC.96.024319
N. Wang, W. Ye, Probing nuclear dissipation with first-chance fission probability. Phys. Rev. C 97, 014603 (2018). doi: 10.1103/PhysRevC.97.014603http://doi.org/10.1103/PhysRevC.97.014603
N. Wang, W. Ye, Probing postsaddle dissipation with light-particle multiplicity of hot heavy nuclear systems. Phys. Rev. C 98, 034614 (2018). doi: 10.1103/PhysRevC.98.034614http://doi.org/10.1103/PhysRevC.98.034614
K. Pomorski, J.M. Blanco, P.V. Kostryukov, et al., Fission fragment mass yields of th to rf even-even nuclei *. Chin. Phys. C 45, 054109 (2021). doi: 10.1088/1674-1137/abec69http://doi.org/10.1088/1674-1137/abec69
P.V. Kostryukov, A. Dobrowolski, B. Nerlo-Pomorska, et al., Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei *. Chin. Phys. C 45, 124108 (2021). doi: 10.1088/1674-1137/ac29a3http://doi.org/10.1088/1674-1137/ac29a3
H. Zheng, S. Burrello, M. Colonna, et al., Connecting the nuclear equation of state to the interplay between fusion and quasifission processes in low-energy nuclear reactions. Phys. Rev. C 98, 024622 (2018). doi: 10.1103/PhysRevC.98.024622http://doi.org/10.1103/PhysRevC.98.024622
L. Guo, C.W. Shen, C. Yu, et al., Isotopic trends of quasifission and fusion-fission in the reactions 48Ca+239,244Pu. Phys. Rev. C 98, 064609 (2018). doi: 10.1103/PhysRevC.98.064609http://doi.org/10.1103/PhysRevC.98.064609
C. Gregoire, C. Ngo, E. Tomasi, et al., Fast fission phenomenon. Nucl. Phys. A 387, 37–50 (1982). doi: 10.1016/0375-9474(82)90190-7http://doi.org/10.1016/0375-9474(82)90190-7
C. Grégoire, C. Ngô, B. Remaud, Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model. Nucl. Phys. A 383, 392–420 (1982). doi: 10.1016/0375-9474(82)90084-7http://doi.org/10.1016/0375-9474(82)90084-7
P. Glässel, D. v. Harrach, H.J. Specht, et al., Observation of proximity- and non-equilibrium effects in ternary heavy ion reactions. Z. Phys. A 310, 189–216 (1983). doi: 10.1007/BF01415224http://doi.org/10.1007/BF01415224
S. Leray, X.S. Chen, G.Y. Fan, et al., Investigation of fast fission in the 35Cl+238U system. Nucl. Phys. A 423, 175–188 (1984). doi: 10.1016/0375-9474(84)90304-Xhttp://doi.org/10.1016/0375-9474(84)90304-X
Z. Zheng, B. Borderie, D. Gardes, et al., Further experimental evidence for fast fission. Nucl. Phys. A 422, 447–460 (1984). doi: 10.1016/0375-9474(84)90526-8http://doi.org/10.1016/0375-9474(84)90526-8
K. Wen, F. Sakata, Z.X. Li, et al., Non-gaussian fluctuations and non-markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations. Phys. Rev. Lett. 111, 012501 (2013). doi: 10.1103/PhysRevLett.111.012501http://doi.org/10.1103/PhysRevLett.111.012501
P. Russotto, P.Z. Wu, M. Zoric, et al., Symmetry energy from elliptic flow in 197Au+197Au. Phys. Lett. B 697, 471–476 (2011). doi: 10.1016/j.physletb.2011.02.033http://doi.org/10.1016/j.physletb.2011.02.033
C. Rizzo, V. Baran, M. Colonna, et al., Symmetry energy effects on fusion cross sections. Phys. Rev. C 83, 014604 (2011). doi: 10.1103/PhysRevC.83.014604http://doi.org/10.1103/PhysRevC.83.014604
J.L. Tian, X. Li, X.Z. Wu, et al., Dynamic potential barrier in the entrance phase of heavy-ion fusion reactions. Eur. Phys. J. A 42, 105 (2009). doi: 10.1140/epja/i2009-10850-2http://doi.org/10.1140/epja/i2009-10850-2
J.L. Tian, L. Ou, H.J. Hao, et al., Dynamical shell effect in the fusion reactions. Int. J. Mod. Phys. E 20, 1755–1764 (2011). doi: 10.1142/S0218301311019556http://doi.org/10.1142/S0218301311019556
C. Li, J.L. Tian, Y.J. Qin, et al., Determination of the nucleon-nucleon interaction in the imqmd model by nuclear reactions at the fermi energy region. Chin. Phys. C 37, 114101 (2013). doi: 10.1088/1674-1137/37/11/114101http://doi.org/10.1088/1674-1137/37/11/114101
J.L. Tian, X.Z. Wu, K. Zhao, et al., Properties of the composite systems formed in the reactions of 238U+238U and 232Th+250Cf. Phys. Rev. C 77, 064603 (2008). doi: 10.1103/PhysRevC.77.064603http://doi.org/10.1103/PhysRevC.77.064603
C. Li, J.L. Tian, L. Ou, et al., Finite-size effects on fragmentation in heavy-ion collisions. Phys. Rev. C 87, 064615 (2013). doi: 10.1103/PhysRevC.87.064615http://doi.org/10.1103/PhysRevC.87.064615
N. Wang, J.L. Tian, W. Scheid, Systematics of fusion probability in “hot” fusion reactions. Phys. Rev. C 84, 061601 (2011). doi: 10.1103/PhysRevC.84.061601http://doi.org/10.1103/PhysRevC.84.061601
P. Goddard, P. Stevenson, A. Rios, Fission dynamics within time-dependent hartree-fock: Deformation-induced fission. Phys. Rev. C 92, 054610 (2015). doi: 10.1103/PhysRevC.92.054610http://doi.org/10.1103/PhysRevC.92.054610
F. Bocage, J. Colin, M. Louvel, et al., Dynamical effects in nuclear collisions in the fermi energy range: aligned breakup of heavy projectiles. Nucl. Phys. A 676, 391–408 (2000). doi: 10.1016/S0375-9474(00)00193-7http://doi.org/10.1016/S0375-9474(00)00193-7
E.D. Filippo, A. Pagano, E. Piasecki, et al., Dynamical fission in 124Sn+64Ni collision at 35a mev. Phys. Rev. C 71, 064604 (2005). doi: 10.1103/PhysRevC.71.064604http://doi.org/10.1103/PhysRevC.71.064604
E. De Filippo, A. Pagano, P. Russotto, et al., Correlations between emission timescale of fragments and isospin dynamics in 124sn+64ni and 112sn+58ni reactions at 35a mev. Phys. Rev. C 86, 014610 (2012). doi: 10.1103/PhysRevC.86.014610http://doi.org/10.1103/PhysRevC.86.014610
E.V. Pagano, L. Acosta, L. Auditore, et al., Statistical against dynamical plf fission as seen by the imf-imf correlation functions and comparisons with comd model. Jour. of Phys. Conf. Series 1014, 012011 (2018). doi: 10.1088/1742-6596/1014/1/012011http://doi.org/10.1088/1742-6596/1014/1/012011
S. Piantelli, G. Casini, A. Ono, et al., Dynamical fission of the quasiprojectile and isospin equilibration for the system 80Kr+48Ca at 35 mev/nucleon. Phys. Rev. C 101, 034613 (2020). doi: 10.1103/PhysRevC.101.034613http://doi.org/10.1103/PhysRevC.101.034613
R.S. Wang, Y. Zhang, Z.G. Xiao, et al., Time-dependent isospin composition of particles emitted in fission events following 40Ar+197Au at 35 mev/u. Phys. Rev. C 89, 064613 (2014). doi: 10.1103/PhysRevC.89.064613http://doi.org/10.1103/PhysRevC.89.064613
G. Casini, P.G. Bizzeti, P.R. Maurenzig, et al., Fission time scales from anisotropic in-plane distributions in 100Mo+100mo mo and 120Sn+120sn collisions around 20a mev. Phys. Rev. Lett. 71, 2567–2570 (1993). doi: 10.1103/PhysRevLett.71.2567http://doi.org/10.1103/PhysRevLett.71.2567
Q.H. Wu, X.Y. Diao, F.H. Guan, et al., Transport model studies on the fast fission of the target-like fragments in heavy ion collisions. Phys. Lett. B 797, 134808 (2019). doi: 10.1016/j.physletb.2019.134808http://doi.org/10.1016/j.physletb.2019.134808
Q.H. Wu, F.H. Guan, X.Y. Diao, et al., Symmetry energy effect on emissions of light particles in coincidence with fast fission. Phys. Lett. B 811, 135865 (2020). doi: 10.1016/j.physletb.2020.135865http://doi.org/10.1016/j.physletb.2020.135865
M. Pancic, Y. Qiang, J.C. Pei, et al., Shape evolutions in fission dynamics within time-dependent hartree-fock approach. Front. Phys. 8, 351 (2020). doi: 10.3389/fphy.2020.00351http://doi.org/10.3389/fphy.2020.00351
F.H. Guan, X.Y. Diao, Y.J. Wang, et al., A compact spectrometer for heavy ion experiments in the fermi energy regime. Nucl. Inst. Meth. A 1011, 165592 (2021). doi: 10.1016/j.nima.2021.165592http://doi.org/10.1016/j.nima.2021.165592
Y.J. Wang, F.H. Guan, X.Y. Diao, et al., Cshine for studies of hbt correlation in heavy ion reactions. Nucl. Sci. Tech. 32, 4 (2021). doi: 10.1007/s41365-020-00842-2http://doi.org/10.1007/s41365-020-00842-2
F.H. Guan, Y.J. Wang, X.Y. Diao, et al., Track recognition for the ee telescopes with silicon strip detectors. Nucl. Inst. Meth. A 1029, 166461 (2022). doi: 10.1016/j.nima.2022.166461http://doi.org/10.1016/j.nima.2022.166461
Y.J. Wang, F.H. Guan, Q.H. Wu, et al., The emission order of hydrogen isotopes via correlation functions in 30 mev/u ar+au reactions. Phys. Lett. B 825, 136856 (2022). doi: 10.1016/j.physletb.2021.136856http://doi.org/10.1016/j.physletb.2021.136856
X.L. Wei, F.H. Guan, H.R. Yang, et al., Development of parallel plate avalanche counter for heavy ion collision in radioactive ion beam. Nucl. Eng. Tech. 52, 575–580 (2020). doi: 10.1016/j.net.2019.08.020http://doi.org/10.1016/j.net.2019.08.020
G.X. Dai, Y.J. Qi, J.W. Zheng, et al., Fission measurement on 5.5 to 21.7mev/a 28Si+197Au system () linear momentum transfer and distribution of out-of-reaction plane. High Ene. Phys. Nucl. Phys. 14, 629–634 (1990).
Z.H. Liu, J.C. Xu, H.Q. Zhang, et al., Subbarrier complete fusion-fission reactions of 16O+232Th. High Ene. Phys. Nucl. Phys. 18, 489–495 (1994).
V.E. Viola, K. Kwiatkowski, M. Walker, Systematics of fission fragment total kinetic energy release. Phys. Rev. C 31, 1550–1552 (1985). doi: 10.1103/PhysRevC.31.1550http://doi.org/10.1103/PhysRevC.31.1550
X. Qian, H.Q. Zhang, Z.H. Liu, et al., Fission fragment angular correlation in the reaction induced by 84.0mev 16O bombarded 238U. High Ene. Phys. Nucl. Phys. 17, 173–178 (1993).
J.W. Zheng, E.J. Wu, Z.G. Xiao, et al., Investigation of fission properties in the reaction 25mev/u 40Ar+209Bi. High Ene. Phys. Nucl. Phys. 23, 409–416 (1999).
J. Zheng, E.J. Wu, C. Zhang, et al., Measurement of fission time scale and excitation energy at scission for 25mev/u 40Ar+209Bi fission reaction. High Ene. Phys. Nucl. Phys. 23, 946–953 (1999).
E.J. Wu, J.W. Zheng, Z.G. Xiao, et al., Evidence for different fission behavior of hot nuclei formed in central and peripheral collisions of 40Ar+209Bi reaction at 25 mev/u. Chin. Phys. Lett. 16, 499 (1999). doi: 10.1088/0256-307X/16/7/011http://doi.org/10.1088/0256-307X/16/7/011
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution