1.Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China
z-zhou14@tsinghua.org.cn
Scan for full text
Jian-Xin Wang, Kui Zhou, Peng Li, et al. High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. [J]. Nuclear Science and Techniques 33(4):44(2022)
Jian-Xin Wang, Kui Zhou, Peng Li, et al. High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. [J]. Nuclear Science and Techniques 33(4):44(2022) DOI: 10.1007/s41365-022-01025-x.
We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering (ICS) X-ray source. By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector, electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector. Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance. Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance. In a typical case of a 9-cell buncher with a 38 MV/m gradient, an ultrashort bunch duration of 0.5 ps (corresponding to a compression ratio of > 5) and a low emittance of < 1 mm·mrad can be readily obtained for a 500 pC electron pulse. This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.
Beam brightnessBallistic bunchingEmittance compensationCompton scattering X-ray source
R. Schoenlein, W. Leemans, A. Chin et al., Femtosecond X-ray pulses at 0.4 generated by 90 Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236 (1996). doi: 10.1126/science.274.5285.236http://doi.org/10.1126/science.274.5285.236
C. Tang, W. Huang, R. Li et al., Tsinghua Thomson scattering X-ray source. Nucl. Instrum. Meth. A 608, S70 (2009). doi: 10.1016/j.nima.2009.05.088http://doi.org/10.1016/j.nima.2009.05.088
K. Dupraz, M. Alkadi, M. Alves et al., The ThomX ICS source. Physics Open 5, 100051 (2020). doi: 10.1016/j.physo.2020.100051http://doi.org/10.1016/j.physo.2020.100051
Z. Chi, Y. Du, L. Yan et al., Thomson scattering X-ray source: a novel tool for monochromatic computed tomography. Developments in X-Ray Tomography XI 10391, 163 (2017). doi: 10.1117/12.2273136http://doi.org/10.1117/12.2273136
K. Ta Phouc, S. Corde, C. Thaury et al., All-optical Compton gamma-ray source. Nat. Photonics 6, 308 (2012). doi: 10.1038/nphoton.2012.82http://doi.org/10.1038/nphoton.2012.82
D. J. Gibson, F. Albert, S. G. Anderson et al., Design and operation of a tunable MeV-level Compton-scattering-based γ-ray source. Phys. Rev. Accel. Beams 13, 070703 (2010). doi: 10.1103/PhysRevSTAB.13.070703http://doi.org/10.1103/PhysRevSTAB.13.070703
S. Boucher, P. Frigola, A. Murokh et al., Inverse compton scattering gamma ray source. Nucl. Instrum. Meth. A 608, S54 (2009). doi: 10.1016/j.nima.2009.05.035http://doi.org/10.1016/j.nima.2009.05.035
F.V. Hartemann, W.J. Brown, D.J. Gibson et al., High-energy scaling of Compton scattering light sources. Phys. Rev. Accel. Beams 8, 100702 (2005). doi: 10.1103/PhysRevSTAB.8.100702http://doi.org/10.1103/PhysRevSTAB.8.100702
X. Wang, M. Babzien, K. Batchelor et al., Experimental characterization of the high-brightness electron photoinjector. Nucl. Instrum. Meth. A 375, 82 (1996). doi: 10.1016/0168-9002(96)00039-3http://doi.org/10.1016/0168-9002(96)00039-3
K.T. McDonald, Design of the laser-driven RF electron gun for the BNL accelerator test facility. IEEE T Electron. Dev. 53, 2052 (1988). doi: 10.1109/16.7427http://doi.org/10.1109/16.7427
L. Zheng, Y. Du, Z. Zhang et al., Development of S-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Meth. A 834, 98 (2016). doi: 10.1016/j.nima.2016.07.015http://doi.org/10.1016/j.nima.2016.07.015
B. E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Meth. A 285, 313 (1989). doi: 10.1016/0168-9002(89)90472-5http://doi.org/10.1016/0168-9002(89)90472-5
T. Rao, D. H. Dowell, An engineering guide to photoinjectors. arXiv:1403.7539 (2014).
R. Akre, D. Dowell, P. Emma et al., Commissioning the Linac Coherent Light Source injector. Phys. Rev. Accel. Beams 11, 030703 (2008). doi: 10.1103/PhysRevSTAB.11.030703http://doi.org/10.1103/PhysRevSTAB.11.030703
H. Chen, L. Yan, Q. Tian et al., Commissioning the photoinjector of a gamma-ray light source. Phys. Rev. Accel. Beams 22, 053403 (2019). doi: 10.1103/PhysRevAccelBeams.22.053403http://doi.org/10.1103/PhysRevAccelBeams.22.053403
S.G. Anderson, P. Musumeci, J.B. Rosenzweig et al., Velocity bunching of high-brightness electron beams. Phys. Rev. Accel. Beams 8, 014401 (2005). doi: 10.1103/PhysRevSTAB.8.014401http://doi.org/10.1103/PhysRevSTAB.8.014401
L. Serafini, M. Ferrario, Velocity bunching in photo-injectors. AIP conference proceedings 581, 87 (2001). doi: 10.1063/1.1401564http://doi.org/10.1063/1.1401564
P. Piot, L. Carr, W. S. Graves et al., Subpicosecond compression by velocity bunching in a photoinjector. Phys. Rev. Accel. Beams 6, 033503 (2003). doi: 10.1103/PhysRevSTAB.6.033503http://doi.org/10.1103/PhysRevSTAB.6.033503
M. Ferrario, D. Alesini, A. Bacci et al., Experimental Demonstration of Emittance Compensation with Velocity Bunching. Phys. Rev. Lett. 104, 054801 (2010). doi: 10.1103/PhysRevLett.104.054801http://doi.org/10.1103/PhysRevLett.104.054801
M. Zhang, D. Gu, Q. Gu et al., Velocity bunching for the linac of Shanghai Deep UV FEL facility. Nucl. Sci. Tech. 23, 134 (2012). doi: 10.13538/j.1001-8042/nst.23.134-138http://doi.org/10.13538/j.1001-8042/nst.23.134-138
R. Huang, Z. He, B. Li et al., Generation of high brightness electron beam by brake-applied velocity bunching with a relatively low energy chirp. Nucl. Instrum. Meth. A 866, 65 (2017). doi: 10.1016/j.nima.2017.05.022http://doi.org/10.1016/j.nima.2017.05.022
H. H. Braun, R. Corsini, L. Groening et al., Emittance growth and energy loss due to coherent synchrotron radiation in a bunch compressor. Phys. Rev. Accel. Beams 3, 124402 (2000). doi: 10.1103/PhysRevSTAB.3.124402http://doi.org/10.1103/PhysRevSTAB.3.124402
P. Musumeci, R. J. England, M. C. Thompson et al., Velocity bunching experiment at the Neptune Laboratory. AIP Conference Proceedings 647, 858 (2002). doi: 10.1063/1.1524941http://doi.org/10.1063/1.1524941
Y Ding, Y. Du, Z. Zhang et al., Simulation study of a photo-injector for brightness improvement in Thomson scattering X-ray source via ballistic bunching. Chinese Phys. C 38, 027003 (2014). doi: 10.1088/1674-1137/38/2/027003http://doi.org/10.1088/1674-1137/38/2/027003
K. Flottmann, A Space Charge Tracking Algorithm (2017). https://www.desy.de/mpyflo/https://www.desy.de/mpyflo/
H. Grote and F. C. Iselin, The MAD program (methodical accelerator design): version 8.10; user’s reference manual. CM-P00049316 (1993).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution