1.Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2.Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
3.Department of radiation physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
* Jian-Rong Dai, dai_jianrong@cicams.ac.cn
Nan Bi, binan_email@163.com
Scan for full text
Jia-Yun Chen, Da-Quan Wang, Xiao-Dong Zhang, et al. Sparing lung tissue with virtual block method in VMAT planning for locally advanced non-small cell lung cancer. [J]. Nuclear Science and Techniques 33(4):51(2022)
Jia-Yun Chen, Da-Quan Wang, Xiao-Dong Zhang, et al. Sparing lung tissue with virtual block method in VMAT planning for locally advanced non-small cell lung cancer. [J]. Nuclear Science and Techniques 33(4):51(2022) DOI: 10.1007/s41365-022-01033-x.
This study aimed to exploit a new virtual block method to spare normal lung tissue in VMAT planning for patients with locally advanced non-small cell lung cancer (LA-NSCLC). The previous method was used to manually restrict the angle of the beam passing through, which ignored the location and shape of large targets that varied between different slices and did not block the beamlets precisely. Unlike the previous method, this new virtual block method was used to block the beamlets when necessary by closing the Multileaf Collimator (MLC) at prerequisite angles. The algorithm for closing the MLC depended on the thickness of the beamlets passing through the lungs and avoided only the entrance radiation beamlet. Moreover, this block can be automatically contoured. A retrospective study was performed to compare the VMAT plans with and without the virtual block method for 17 LA-NSCLC patients, named the block plan (B-plan)/non-block plan (N-plan). All cases were selected in this study because of the large tumor size and unmet dose constraints of the lungs. In addition to the maximum dose constraint for the virtual block, B-plans adopted identical optimization parameters to N-plans for each patient. These two types of plans were compared in terms of dosimetric indices and plan scores. The results were statistically analyzed using the Wilcoxon nonparametric signed-rank test. B-plans have advantages in the following dosimetric metrics that have statistical significance (,p,<, 0.05):1) lower ,V,5,/,V,10,/,D,mean,/normal tissue complication probability (NTCP) of total lungs; 2) reductions in ,V,5,/,V,10, for the contralateral lung; 3) decrease in ,D,mean,/,V,40, of the heart; 4) decrease in esophagus ,V,40,; 5) reductions in ,D,mean,V,5,/,V,10, of normal tissue. B-plans (82.51 ± 7.07) achieved higher quality scores than N-plans (80.74 ± 7.22). The new virtual block spared the lungs as well as other normal structures in VMAT planning for LA-NSCLC. Thus, the block method may decrease the risk of radiation-related toxicity in patients.
Virtual blockVMATNormal tissue sparingLung cancer
P. Yang, M.S. Allen, M.C. Aubry et al. Clinical Features of 5,628 Primary Lung Cancer Patients: Experience at Mayo Clinic From 1997 to 2003. Chest 128(1), 452-462 (2005). doi: 10.1378/chest.128.1.452http://doi.org/10.1378/chest.128.1.452
W.E.E. Eberhardt, D. De Ruysscher, W. Weder et al. 2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer. Ann. Oncol. 26(8), 1573-1588 (2015). doi: 10.1093/annonc/mdv187http://doi.org/10.1093/annonc/mdv187
J. Liang, N. Bi, S. Wu et al. Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial. Ann. Oncol. 28(4), 777-783 (2017). doi: 10.1093/annonc/mdx009http://doi.org/10.1093/annonc/mdx009
J. Wang, Z. Zhou, J. Liang et al. Intensity-Modulated Radiation Therapy May Improve Local-Regional Tumor Control for Locally Advanced Non-Small Cell Lung Cancer Compared With Three-Dimensional Conformal Radiation Therapy. Oncologist 21(12), 1530-1537 (2016). doi: 10.1634/theoncologist.2016-0155http://doi.org/10.1634/theoncologist.2016-0155
M. Teoh, C.H. Clark, K. Wood et al. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Brit. J. Radiol. 84(1007), 967-996 (2011). doi: 10.1259/bjr/22373346http://doi.org/10.1259/bjr/22373346
K. Otto. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 35(1), 310-317 (2008). doi: 10.1118/1.2818738http://doi.org/10.1118/1.2818738
X. Jiang, T. Li, Y. Liu et al. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat. Oncol. 6, 140-140 (2011). doi: 10.1186/1748-717X-6-140http://doi.org/10.1186/1748-717X-6-140
L. Herman Tde, E. Schnell, J. Young et al. Dosimetric comparison between IMRT delivery modes: Step-and-shoot, sliding window, and volumetric modulated arc therapy - for whole pelvis radiation therapy of intermediate-to-high risk prostate adenocarcinoma. J. Med. Phys. 38(4), 165-172 (2013). doi: 10.4103/0971-6203.121193http://doi.org/10.4103/0971-6203.121193
Y. Xu, W. Deng, S. Yang et al. Dosimetric comparison of the helical tomotherapy, volumetric-modulated arc therapy and fixed-field intensity-modulated radiotherapy for stage IIB-IIIB non-small cell lung cancer. Sci. Rep. 7(1), 14863 (2017). doi: 10.1038/s41598-017-14629-whttp://doi.org/10.1038/s41598-017-14629-w
J. Zhang, X.L. Yu, G.F. Zheng et al. Intensity-modulated radiotherapy and volumetric-modulated arc therapy have distinct clinical advantages in non-small cell lung cancer treatment. Med. Oncol. 32(4), 94 (2015). doi: 10.1007/s12032-015-0546-6http://doi.org/10.1007/s12032-015-0546-6
T. Ueyama, T. Arimura, K. Takumi et al. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio. Brit. J. Radiol. 91(1086), 20170453 (2018). doi: 10.1259/bjr.20170453http://doi.org/10.1259/bjr.20170453
L. Sheng, X. Cui, L. Cheng et al. Risk factors of grade ≥ 2 radiation pneumonitis after gemcitabine induction chemotherapy for patients with non-small cell lung cancer. Radiat. Oncol. 14(1), 229 (2019). doi: 10.1186/s13014-019-1440-8http://doi.org/10.1186/s13014-019-1440-8
C. Ren, T. Ji, T. Liu et al. The risk and predictors for severe radiation pneumonitis in lung cancer patients treated with thoracic reirradiation. Radiat. Oncol. 13(1), 69 (2018). doi: 10.1186/s13014-018-1016-zhttp://doi.org/10.1186/s13014-018-1016-z
K. Wu, X. Xu, X. Li et al. Radiation pneumonitis in lung cancer treated with volumetric modulated arc therapy. J. Thorac. Dis. 10(12), 6531-6539 (2018). doi: 10.21037/jtd.2018.11.132http://doi.org/10.21037/jtd.2018.11.132
H.H. Liu, X. Wang, L. Dong et al. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 58(4), 1268-1279 (2004). doi: 10.1016/j.ijrobp.2003.09.085http://doi.org/10.1016/j.ijrobp.2003.09.085
S.S. Yom, Z. Liao, H.H. Liu et al. Initial Evaluation of Treatment-Related Pneumonitis in Advanced-Stage Non–Small-Cell Lung Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy. Int. J. Radiat. Oncol. 68(1), 94-102 (2007). doi: 10.1016/j.ijrobp.2006.12.031http://doi.org/10.1016/j.ijrobp.2006.12.031
M. Ito, H. Shimizu, T. Aoyama et al. Efficacy of virtual block objects in reducing the lung dose in helical tomotherapy planning for cervical oesophageal cancer: a planning study. Radiat. Oncol. 13(1), 62 (2018). doi: 10.1186/s13014-018-1012-3http://doi.org/10.1186/s13014-018-1012-3
C.-S. Hong, S.G. Ju, Y.C. Ahn et al. Normal lung sparing Tomotherapy technique in stage III lung cancer. Radiat. Oncol. 12(1), 167 (2017). doi: 10.1186/s13014-017-0905-xhttp://doi.org/10.1186/s13014-017-0905-x
H.-P. Yeh, Y.-C. Huang, L.-Y. Wang et al. Helical tomotherapy with a complete-directional-complete block technique effectively reduces cardiac and lung dose for left-sided breast cancer. Brit. J. Radiol. 93(1108), 20190792 (2020). doi: 10.1259/bjr.20190792http://doi.org/10.1259/bjr.20190792
V.S. Brennan, B. Curran, C. Skourou et al. A novel dynamic arc treatment planning solution to reduce dose to small bowel in preoperative radiotherapy for rectal cancer. Med. Dosim. 44(3), 258-265 (2019). doi: 10.1016/j.meddos.2018.09.005http://doi.org/10.1016/j.meddos.2018.09.005
E. Hubley, G. Shukla, Y. Vakhnenko et al. Avoidance sectors to reduce dosimetric impact of an irreproducible pannus on setup uncertainty in prostate SBRT VMAT: A case study. Med. Dosim. 44(2), 179-182 (2019). doi: 10.1016/j.meddos.2018.05.003http://doi.org/10.1016/j.meddos.2018.05.003
A. Starke, J. Bowden, R. Lynn et al. Comparison of butterfly volumetric modulated arc therapy to full arc with or without deep inspiration breath hold for the treatment of mediastinal lymphoma. Radiother. Oncol. 129(3), 449-455 (2018). doi: 10.1016/j.radonc.2018.08.017http://doi.org/10.1016/j.radonc.2018.08.017
D. Wang, J. Chen, X. Zhang et al. Sparing Organs at Risk with Simultaneous Integrated Boost Volumetric Modulated Arc Therapy for Locally Advanced Non-Small Cell Lung Cancer: An Automatic Treatment Planning Study. Cancer Manag. Res. 12, 9643-9653 (2020). doi: 10.2147/cmar.S273197http://doi.org/10.2147/cmar.S273197
J. Chen, J. Dai, A. Nobah et al. A Special Report on 2019 International Planning Competition and a Comprehensive Analysis of Its Results. Front. Oncol. 10(2662) (2020). doi: 10.3389/fonc.2020.571644http://doi.org/10.3389/fonc.2020.571644
J. Chen, W. Cui, Q. Fu et al. Influence of maximum MLC leaf speed on the quality of volumetric modulated arc therapy plans. J. Appl. Clinical Med. Phys. 21(11), 37-47 (2020). doi: 10.1002/acm2.13020http://doi.org/10.1002/acm2.13020
J. Chen, G. Fu, M. Li et al. Evaluation of MLC leaf transmission on IMRT treatment plan quality of patients with advanced lung cancer. Med. Dosim. 43(4), 313-318 (2018). doi: 10.1016/j.meddos.2017.10.008http://doi.org/10.1016/j.meddos.2017.10.008
X. Zhang, X. Li, E.M. Quan et al. A methodology for automatic intensity-modulated radiation treatment planning for lung cancer. Phys. Med. Biol. 56(13), 3873-3893 (2011). doi: 10.1088/0031-9155/56/13/009http://doi.org/10.1088/0031-9155/56/13/009
E.M. Quan, J.Y. Chang, Z. Liao et al. Automated volumetric modulated Arc therapy treatment planning for stage III lung cancer: how does it compare with intensity-modulated radio therapy? Int. J. Radiat. Oncol. Biol. Phys. 84(1), e69-76 (2012). doi: 10.1016/j.ijrobp.2012.02.017http://doi.org/10.1016/j.ijrobp.2012.02.017
C. Beong and O.D. Joseph. The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Phys. Med. Biol. 47(20), 3579 (2002).
V. Batumalai, M.G. Jameson, D.F. Forstner et al. How important is dosimetrist experience for intensity modulated radiation therapy? A comparative analysis of a head and neck case. Pract. Radiat. Oncol. 3(3), e99-e106). doi: 10.1016/j.prro.2012.06.009http://doi.org/10.1016/j.prro.2012.06.009
B.E. Nelms, G. Robinson, J. Markham et al. Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract. Radiat. Oncol. 2(4), 296-305 (2012).
L. Feuvret, G. Noel, J.J. Mazeron et al. Conformity index: a review. Int. J. Radiat. Oncol. Biol. Phys. 64(2), 333-342 (2006). doi: 10.1016/j.ijrobp.2005.09.028http://doi.org/10.1016/j.ijrobp.2005.09.028
L. Wang, C. Li, X. Meng et al. Dosimetric and Radiobiological Comparison of External Beam Radiotherapy Using Simultaneous Integrated Boost Technique for Esophageal Cancer in Different Location. Front. Oncol. 9, 674 (2019). doi: 10.3389/fonc.2019.00674http://doi.org/10.3389/fonc.2019.00674
J. Bohsung, S. Gillis, R. Arrans et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother. Oncol. 76(3), 354-361 (2005). doi: 10.1016/j.radonc.2005.08.003http://doi.org/10.1016/j.radonc.2005.08.003
V.A. Semenenko and X.A. Li. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys. Med. Biol. 53(3), 737-755 (2008). doi: 10.1088/0031-9155/53/3/014http://doi.org/10.1088/0031-9155/53/3/014
J. Miao, H. Yan, Y. Tian et al. Reducing dose to the lungs through loosing target dose homogeneity requirement for radiotherapy of non small cell lung cancer. J. Appl. Clinical Med. Phys. 18(6), 169-176 (2017).
R. Wijsman, F. Dankers, E.G.C. Troost et al. Comparison of toxicity and outcome in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy using IMRT or VMAT. Radiother. Oncol. 122(2), 295-299 (2017). doi: 10.1016/j.radonc.2016.11.015http://doi.org/10.1016/j.radonc.2016.11.015
X. Jin, B. Lin, D. Chen et al. Safety and outcomes of volumetric modulated arc therapy in the treatment of patients with inoperable lung cancer. J. Cancer. 10(13), 2868-2873 (2019). doi: 10.7150/jca.31260http://doi.org/10.7150/jca.31260
A. Shi, G. Zhu, H. Wu et al. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat. Oncol. 5, 35 (2010). doi: 10.1186/1748-717x-5-35http://doi.org/10.1186/1748-717x-5-35
R.B. Barriger, A.J. Fakiris, N. Hanna et al. Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int. J. Radiat. Oncol. Biol. Phys. 78(5), 1381-1386 (2010). doi: 10.1016/j.ijrobp.2009.09.030http://doi.org/10.1016/j.ijrobp.2009.09.030
S.J. Antonia, A. Villegas, D. Daniel et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 377(20), 1919-1929 (2017). doi: 10.1056/NEJMoa1709937http://doi.org/10.1056/NEJMoa1709937
D.V. Faivre-Finn, T. Kurata, D. Planchard, L. Paz-Ares, J.F. Vansteenkiste, D.R. Spigel, M.C. Garassino, and others. Durvalumab after chemotherapy in stage III NSCLC: 4-year survival upda from the phase III PACIFIC trial. Ann. Oncol. 31, S1178-1179 (2020). doi: 10.1016/j.annonc.2020.08.2281http://doi.org/10.1016/j.annonc.2020.08.2281
K. Wang, M.J. Eblan, A.M. Deal et al. Cardiac Toxicity After Radiotherapy for Stage III Non-Small-Cell Lung Cancer: Pooled Analysis of Dose-Escalation Trials Delivering 70 to 90 Gy. J. Clin. Oncol. 35(13), 1387-1394 (2017). doi: 10.1200/JCO.2016.70.0229http://doi.org/10.1200/JCO.2016.70.0229
S.G. Chun, C. Hu, H. Choy et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J. Clin. Oncol. 35(1), 56-62 (2017). doi: 10.1200/JCO.2016.69.1378http://doi.org/10.1200/JCO.2016.69.1378
D. Wang, N. Bi, T. Zhang et al. Comparison of efficacy and safety between simultaneous integrated boost intensity-modulated radiotherapy and conventional intensity-modulated radiotherapy in locally advanced non-small-cell lung cancer: a retrospective study. Radiat. Oncol. 14(1), 106 (2019). doi: 10.1186/s13014-019-1259-3http://doi.org/10.1186/s13014-019-1259-3
C.J. Wang D, Zhang X, Zhang T, Wang L, Feng Q, Zhou Z, Dai J, Bi N. Sparing Organs at Risk with Simultaneous Integrated Boost Volumetric Modulated Arc Therapy for Locally Advanced Non-Small Cell Lung Cancer: An Automatic Treatment Planning Study. Cancer Manag. Res. 12, 9643-9653 (2020). doi: 10.2147/CMAR.S273197http://doi.org/10.2147/CMAR.S273197
M.-A. Kalogeridi, A. Zygogianni, G. Kyrgias et al. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J. Hepatol. 7(1), 101-112 (2015). doi: 10.4254/wjh.v7.i1.101http://doi.org/10.4254/wjh.v7.i1.101
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution