1.College of Nuclear Science and Technology, Joint Laboratory of Jinping Ultra-low Radiation Background Measurement of Ministry of Ecology and Environment and Beijing Normal University, Key Laboratory of Beam Technology of Ministry of Education, Beijing Normal University, Beijing 100875, China
2.Beijing Radiation Center, Beijing 100875, China
3.Department of Engineering Physics, Key Laboratory of Particle & Radiation Imaging of Ministry of Education Tsinghua University, Beijing 100084, China
4.Joint Research Center, Nuctech Company Limited, Beijing 100084, China
*yyliu@bnu.edu.cn;
lvss@bnu.edu.cn
Scan for full text
Shao-Jun Zhang, Yuan-Yuan Liu, Sha-Sha Lv, et al. Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments. [J]. Nuclear Science and Techniques 33(7):90(2022)
Shao-Jun Zhang, Yuan-Yuan Liu, Sha-Sha Lv, et al. Surface metallization of PTFE and PTFE composites by ion implantation for low-background electronic substrates in rare-event detection experiments. [J]. Nuclear Science and Techniques 33(7):90(2022) DOI: 10.1007/s41365-022-01068-0.
Polytetrafluoroethylene (PTFE) is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments. PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters, which are widely applied in dark matter and 0υββ detection experiments. The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments. To avoid adhesive bonding, PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer. Low-background PTFE matrix composites (m-PTFE) were selected to improve the electrical and mechanical properties of PTFE by introducing SiO,2,/TiO,2, particles. The microstructures, surface elements, and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation. PTFE and m-PTFE surfaces were found to be broken, degraded, and crosslinked by ion implantation, resulting in C=C conjugated double bonds, increased surface energy, and increased surface roughness. Comparably, the surface roughness, bond strength, and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE. Moreover, the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle. Therefore, the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures, while maintaining excellent electrical properties.
Surface modificationPolytetrafluoroethyleneIon implantationSurface metallizationLow temperature resistance
I. Bandac, S. Borjabad, A. Ianni et al., Ultra-low background and environmental measurements at Laboratorio Subterráneo de Canfranc (LSC). App. Radiation and Isotopes, 126, 127-129 (2017). doi: 10.1016/j.apradiso.2017.02.046http://doi.org/10.1016/j.apradiso.2017.02.046
Y.L. Yan, W.X. Zhong, S.T. Lin et al., Study on cosmogenic radioactive production in germanium as a background for future rare-event search experiments. Nucl. Sci. Tech. 31, 55 (2020). doi: 10.1007/s41365-020-00762-1http://doi.org/10.1007/s41365-020-00762-1
S.S. Lv, Y.Y. Liu, W.Y. Tang et al., Evaluation of the passivation effect and the first-principles calculation on surface termination of germanium detector. Nucl. Sci. Tech. 32, 93 (2021). doi: 10.1007/s41365-021-00930-xhttp://doi.org/10.1007/s41365-021-00930-x
Y. Wang, Y.Y. Liu, B. Wu et al., Experimental investigation on the radiation background inside body counters. Nucl. Sci. Tech. 33, 20 (2022). doi: 10.1007/s41365-022-01004-2http://doi.org/10.1007/s41365-022-01004-2
K.L. Giboni, P. Juyal, E. Aprile et al., A LN2-based cooling system for a next-generation liquid xenon dark matter detector. Nucl. Sci. Tech. 31, 76 (2020). doi: 10.1007/s41365-020-00786-7http://doi.org/10.1007/s41365-020-00786-7
N. Abgrall, I.J. Arnquist, F.T. Avignone et al., The Majorana Demonstrator radioassay program. Nucl. Instrum. Methods Phys. A 828, 22-36 (2016). doi: 10.1016/j.nima.2016.04.070http://doi.org/10.1016/j.nima.2016.04.070
Ph. Camus, A. Cazes, A. Dastgheibi-Fard et al., CUTE: A low background facility for testing cryogenic dark matter detectors. J. Low Temp. Phys. 193, 813-818 (2018). doi: 10.1007/s10909-018-2014-0http://doi.org/10.1007/s10909-018-2014-0
K.H. Ackermann, M. Agostini, M. Allardt et al., The GERDA experiment for the search of 0υββ decay in 76Ge. Eur. Phys. J. C 73, 2330 (2013). doi: 10.1140/epjc/s10052-013-2330-0http://doi.org/10.1140/epjc/s10052-013-2330-0
H. Ma, Y. Chen, Q. Yue et al., CDEX dark matter experiment: Status and prospects. J. Phys. Conf. Ser. 1342, 012067 (2020). doi: 10.1088/1742-6596/1342/1/012067http://doi.org/10.1088/1742-6596/1342/1/012067
P. Barton, P. Luke, M. Amman et al., Low-noise low-mass front end electronics for low-background physics experiments using germanium detectors. IEEE Nucl. Scie. Symposium Conference 1976-1979 (2011). doi: 10.1109/NSSMIC.2011.6154397http://doi.org/10.1109/NSSMIC.2011.6154397
W.H. Zeng, H. Ma, M. Zeng et al., Evaluation of cosmogenic activation of copper and germanium during production in Jinping Underground Laboratory. Nucl. Sci. Tech. 31, 50 (2020). doi: 10.1007/s41365-020-00760-3http://doi.org/10.1007/s41365-020-00760-3
H.Y. Du, C.B. Du, K. Giboni et al., Screener3D: a gaseous time projection chamber for ultra-low radioactive material screening. Nucl. Sci. Tech. 32, 142 (2021). doi: 10.1007/s41365-021-00983-yhttp://doi.org/10.1007/s41365-021-00983-y
GERDA Collaboration, M. Agostini, A. M. Bakalyarov, M. Balata, et al. Upgrade for Phase II of the GERDA Experiment. Eur. Phys. J. C 78, 388 (2018). doi: 10.1140/epjc/s10052-018-5812-2http://doi.org/10.1140/epjc/s10052-018-5812-2
G. Primc, Recent advances in surface activation of polytetrafluoroethylene (PTFE) by gaseous plasma treatments. Polymers (Basel) 12, 2295 (2020). doi: 10.3390/polym12102295http://doi.org/10.3390/polym12102295
Y. Fan, S. Li, X Tao et al., Negative triboelectric polymers with ultrahigh charge density induced by ion implantation. Nano Energy 90, 106574 (2021). doi: 10.1016/j.nanoen.2021.106574http://doi.org/10.1016/j.nanoen.2021.106574
I.V. Vasenina, K.P. Savkin, O.A. Laput et al., Effects of ion- and electron-beam treatment on surface physicochemical properties of polytetrafluoroethylene. Surf. Coat. Technol. 334, 134-141 (2018). doi: 10.1016/j.surfcoat.2017.11.035http://doi.org/10.1016/j.surfcoat.2017.11.035
K. Kotra-Konicka, J. Kalbarczyk, J.M. Gac, Modification of polypropylene membranes by ion implantation. Chem, Process Eng. 37, 331-339 (2016). doi: 10.1515/cpe-2016-0027http://doi.org/10.1515/cpe-2016-0027
M. Lv, F. Zheng, Q.H. Wang et al., Surface structural changes, surface energy and antiwear properties of polytetrafluoroethylene induced by proton irradiation. Mater. Des. 85, 162-168 (2015). doi: 10.1016/j.matdes.2015.06.155http://doi.org/10.1016/j.matdes.2015.06.155
P. Sommani, H. Tsuji, H. Kojima et al., Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property. Nucl. Instrum. Methods Phys. Res. B 268, 3231-3234 (2010). doi: 10.1016/j.nimb.2010.05.096http://doi.org/10.1016/j.nimb.2010.05.096
D.L. Pugmire, C.J. Wetteland, W.S. Duncan et al., Cross-linking of polytetrafluoroethylene during room-temperature irradiation. Polym. Degrad. Stab. 94, 1533-1541 (2009). doi: 10.1016/j.polymdegradstab.2009.04.024http://doi.org/10.1016/j.polymdegradstab.2009.04.024
M. Manso, A. Valsesia, M. Lejeune et al., Tailoring surface properties of biomedical polymers by implantation of Ar and He ions. Acta Biomater. 1, 431-440 (2005). doi: 10.1016/j.actbio.2005.03.003http://doi.org/10.1016/j.actbio.2005.03.003
G. Peng, H. Geng, D. Yang et al., An analysis on changes in structure, tensile properties of polytetrafluoroethylene film induced by protons. Radiat. Phys. Chem. 69, 163-169 (2004). doi: 10.1016/S0969-806X(03)00440-7http://doi.org/10.1016/S0969-806X(03)00440-7
S.W. Lee, J.W. Hong, M.Y. Wye et al., Surface modification and adhesion improvement of PTFE film by ion beam irradiation. Nucl. Instrum. Methods Phys. Res. B 219–220, 963-967 (2004). doi: 10.1016/j.nimb.2004.01.197http://doi.org/10.1016/j.nimb.2004.01.197
J.M. Colwell, E. Wentrup-Byrne, J.M. Bell et al., A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE. Surf. Coat. Technol. 168, 216-222 (2003). doi: 10.1016/S0257-8972(03)00204-4http://doi.org/10.1016/S0257-8972(03)00204-4
J. Zhang, X. Yu, H. Li et al., Surface modification of polytetrafluoroethylene by nitrogen ion implantation. Appl. Surf. Sci. 185, 255-261 (2002). doi: 10.1016/S0169-4332(01)00824-8http://doi.org/10.1016/S0169-4332(01)00824-8
G. Mesyats, Yu. Klyachkin, N. Gavrilov et al., Adhesion of polytetrafluorethylene modified by an ion beam. Vacuum 52, 285-289 (1999). doi: 10.1016/S0042-207X(98)00300-5http://doi.org/10.1016/S0042-207X(98)00300-5
E.H. Lee, M.B. Lewis, P.J. Blau et al., Improved surface properties of polymer materials by multiple ion beam treatment. J. Mater. Res. 6, 610-628 (1991). doi: 10.1557/JMR.1991.0610http://doi.org/10.1557/JMR.1991.0610
Eal H. Lee, Ion-beam modification of polymeric materials – fundamental principles and applications. Nucl. Instrum. Methods Phys. Res. B 151, 29-41 (1999). doi: 10.1016/S0168-583X(99)00129-9http://doi.org/10.1016/S0168-583X(99)00129-9
S. Li, Y. Fan, H. Chen et al., Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 13, 896-907 (2020). doi: 10.1039/C9EE03307Fhttp://doi.org/10.1039/C9EE03307F
N. Zettsu, H. Itoh, K. Yamamura, Surface functionalization of PTFE sheet through atmospheric pressure plasma liquid deposition approach. Surf. Coat. Technol. 202, 5284-5288 (2008). doi: 10.1016/j.surfcoat.2008.06.006http://doi.org/10.1016/j.surfcoat.2008.06.006
L. Guzman, B.Y Man, A. Miotello et al., Ion beam induced enhanced adhesion of Au films deposited on polytetrafluoroethylene. Thin Solid Films 420–421, 565-570 (2002). doi: 10.1016/S0040-6090(02)00839-8http://doi.org/10.1016/S0040-6090(02)00839-8
U. Lappan, U. Geißler, U. Scheler, Chemical structures formed in electron beam irradiated poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP). Macromol. Mater. Eng. 291, 937-943 (2006). doi: 10.1002/mame.200600143http://doi.org/10.1002/mame.200600143
J. J. Bikerman, Causes of poor adhesion: boundary layers. Ind. Eng. Chem. 59, 40-44 (1967). doi: 10.1021/ie51403a010http://doi.org/10.1021/ie51403a010
H. Schonhorn, R.H. Hansen, Surface treatment of polymers for adhesive bonding. J. Appl. Polym. Sci. 11, 1461-1474 (1967). doi: 10.1002/app.1967.070110809http://doi.org/10.1002/app.1967.070110809
D. M. Brewis, I. Mathieson, I. Sutherland et al., Adhesion studies of fluoropolymers. J. Adhes. 41, 113-128 (1993). doi: 10.1080/00218469308026557http://doi.org/10.1080/00218469308026557
Y.-C. Chen, H-C Lin, Y-D. Lee, The effects of filler content and size on the properties of PTFE/SiO2 composites. J Polym. Res. 10, 247-258 (2003). doi: 10.1023/B:JPOL.0000004620.71900.16http://doi.org/10.1023/B:JPOL.0000004620.71900.16
Y. Liu, J. Cheng, P. Pang et al., Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX. Chin. Phys. B 29, 045203 (2020). doi: 10.1088/1674-1056/ab718ahttp://doi.org/10.1088/1674-1056/ab718a
M.B. Lewis, E.H. Lee, Residual gas and ion-beam analysis of ion-irradiated polymers. Nucl. Instrum. Methods Phys. Res. B 61, 457-465 (1991). doi: 10.1016/0168-583X(91)95323-6http://doi.org/10.1016/0168-583X(91)95323-6
S.P. Firsov, G.R. Zhbankov, M. Bakhramov et al., Raman spectra and structure of polytetrafluoroethylene subjected to elastic deformation grinding. J Appl. Spectrosc. 59, 644-647 (1993). doi: 10.1007/BF00661793http://doi.org/10.1007/BF00661793
J. L. Koenig, F. J. Boerio, Raman scattering and band assignments in polytetraftuoroethylene. J. Chem. Phys. 50, 2823-2829 (1969). doi: 10.1063/1.1671470http://doi.org/10.1063/1.1671470
D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741-1747 (1969). doi: 10.1002/app.1969.070130815http://doi.org/10.1002/app.1969.070130815
S.-L. Sagit, M. Abraham, Validity and accuracy in evaluating surface tension of solids by additive approaches. J. Colloid Interface Sci. 262, 489-499 (2003). doi: 10.1016/S0021-9797(02)00231-Xhttp://doi.org/10.1016/S0021-9797(02)00231-X
Ricky K.Y. Fu, Y.F. Mei, G.J. Wan et al., Surface composition and surface energy of Teflon treated by metal plasma immersion ion implantation. Surf. Sci. 573, 426-432 (2004). doi: 10.1016/j.susc.2004.10.007http://doi.org/10.1016/j.susc.2004.10.007
S. Liu, C. Fu, A. Gu et al., Structural changes of polytetrafluoroethylene during irradiation in oxygen. Radiat. Phys. Chem. 109, 1-5 (2015). doi: 10.1016/j.radphyschem.2014.12.005http://doi.org/10.1016/j.radphyschem.2014.12.005
Y. Ohkubo, M. Shibahara, A. Nagatani et al., Comparison between adhesion properties of adhesive bonding and adhesive-free adhesion for heat-assisted plasma-treated polytetrafluoroethylene (PTFE). J. Adhes. 96, 776-796 (2020). doi: 10.1080/00218464.2018.1512859http://doi.org/10.1080/00218464.2018.1512859
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution